
Pengutronix e. K.
Peiner Straße 6–8
31137 Hildesheim

+49 (0)51 21 / 20 69 17 – 0 (Fon)
+49 (0)51 21 / 20 69 17 – 55 55 (Fax)

info@pengutronix.de

© 2010 Pengutronix, Hildesheim – Rev. 1498/395

How to become a PTXdist Guru
Based on the OSELAS.BSP()
Pengutronix Generic-x86

OSELAS.Support
OSELAS.Training
OSELAS.Development
OSELAS.Services

Contents

1 Welcome to the EmbeddedWorld 5
1.1 First Steps in the EmbeddedWorld . 5
1.2 From Server to Embedded . 6
1.3 Linux = Embedded Linux . 6

2 Getting a working Environment 7
2.1 Download Software Components . 7
2.2 PTXdist Installation . 7

2.2.1 Main Parts of PTXdist . 7
2.2.2 Extracting the Sources . 8
2.2.3 Prerequisites . 9
2.2.4 Configuring PTXdist . 10

2.3 Toolchains . 11
2.3.1 Using Existing Toolchains . 11
2.3.2 Building a Toolchain . 12
2.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Generic-2010.01.0 12
2.3.4 Protecting the Toolchain . 13
2.3.5 Building Additional Toolchains . 13

3 PTXdist User’s Manual 14
3.1 How does it work? . 14

3.1.1 PTXdist’s perception of the world . 14
3.1.2 PTXdist’s build process . 15

3.2 First steps with PTXdist . 15
3.2.1 Extracting the Board Support Package . 17
3.2.2 Selecting a Userland Configuration . 18
3.2.3 Selecting a Hardware Platform . 18
3.2.4 Selecting a Toolchain . 19
3.2.5 Building the Root Filesystem Content . 19
3.2.6 What we Got Now . 19
3.2.7 Creating a Root Filesystem Image . 20
3.2.8 Running all Parts in an emulated Environment (QEMU) 20

3.3 Adapting the OSELAS.BSP-Pengutronix-Generic-2010.01.0 Project 20
3.3.1 Working with Kconfig . 20
3.3.2 Adapting Platform Settings . 23
3.3.3 Adapting Linux Kernel Settings . 23
3.3.4 Adapting Userland Settings . 24

4 PTXdist Developer’s Manual 26
4.1 PTXdist’s directory hierarchy . 26

4.1.1 Rule Files . 26
4.1.2 Patch Series . 26
4.1.3 Runtime Configuration . 27

3

Contents

4.2 Adding new Packages . 27
4.2.1 Rule File Creation . 28
4.2.2 Make it Work . 29
4.2.3 Advanced Rule Files . 33
4.2.4 Patching Packages . 39
4.2.5 Creating Patches for a Package . 39
4.2.6 Modifying Autotoolized Packages . 40

5 PTXdist Reference 41
5.1 Rule File Macro Reference . 41

5.1.1 targetinfo . 41
5.1.2 touch . 41
5.1.3 clean . 41
5.1.4 install_copy . 42
5.1.5 install_alternative . 43
5.1.6 install_link . 43

5.2 Rule file layout . 44
5.2.1 Default stage rules . 44
5.2.2 Skipping a Stage . 46

6 Various Aspects of Daily Work 47
6.1 Using an External Kernel Source Tree . 47

6.1.1 Cloning the Linux Kernel Source Tree . 47
6.1.2 Configuring PTXdist . 47
6.1.3 Configuring the PTXdist Project . 47
6.1.4 Work Flow . 48

6.2 Discovering Runtime Dependencies . 48
6.2.1 Dependencies to Shared Libraries . 49
6.2.2 Dependencies to other Resources . 49

6.3 Migration between Minor Releases . 50
6.3.1 Simple Upgrade . 50

6.4 Migration between Major Releases . 50
6.4.1 Basic Conversion . 50
6.4.2 Adaption of Rules Files . 51
6.4.3 PTXdist-1 Look and Feel . 51

6.5 Software Installation and Upgrade . 52
6.5.1 ipkg Usage in PTXdist . 52
6.5.2 Packet Installation . 53
6.5.3 Automatic Packet Download . 53
6.5.4 The ipkg Command . 53

7 Getting help 55
7.1 Mailing Lists . 55

7.1.1 About PTXdist in Particular . 55
7.1.2 About Embedded Linux in General . 55

7.2 News Groups . 55
7.2.1 About Linux in Embedded Environments . 55
7.2.2 About General Unix/Linux Questions . 55

7.3 Chat/IRC . 56
7.4 Commercial Support . 56

4

1 Welcome to the EmbeddedWorld

1.1 First Steps in the EmbeddedWorld

Once upon in time, programming embedded systems was easy: all a developer needed when he wanted to start
a new product was a good toolchain, consisting of

• a compiler

• maybe an assembler

• probably an EPROM burning device

and things could start. After some more or less short time, every register of the CPU was known, a variety of
library routines had been developed and our brave developer was able to do his project with the more andmore
well-known system. The controllers had legacy interfaces like RS232, i2c or SPI which connected them to the
outside world and the main difference between the controllers available on the market was the number of GPIO
pins, UARTS and memory ressources.

Things have changed. Hardware manufacturers have weakened the border between deeply embedded micro-
controllers – headless devices with just a few pins and very limited computing power – and full blown micropro-
cessors. System structures becamemuchmore complicated: where our good old controllers have had just some
interrupts with some small interrupt service routines, we today need complicated generic interrupt infrastruc-
tures, suitable for generic software frameworks. Where we’ve had some linearly mapped flash ROM and some
data RAMwe today have multi-stage-pipeline architectures, memory management units, virtual address spaces,
on-chip-memory, caches and other complicated units, which is not exactly what the embedded systemdeveloper
wants program every other day.

Entering embedded operating systems. Although there are still some processors out there (like the popular
ARM7TDMI based SoCs) which can be programmed the good old non-operating-system way with reasonable
effort, it in fact is becoming more and more difficult. On the other hand, legacy I/O interfaces like RS232 are in-
creasingly often replaced by modern plug-and-play aware communication channels: USB, FireWire (IEEE1394),
Ethernet & friends are more and more directly being integrated into today’s microcontroller hardware. Whereas
some of these interfaces can ”‘somehow”’ be handled the old controller-style way of writing software, the devel-
oper following this way will not be able to address the security and performance issues which come up with the
modern network accessible devices.

During the last years, more and more of the small-scale companies which developed little embedded operating
systems have been pushed out of the market. Nearly no small company is able to support all the different in-
terfaces, communication stacks, development tools and security issues out there. New interfaces and -variants
(like USB On-the-Go) are developed faster than operating system developers can supply the software for them.
The result is a consolidation of the market: today we see that, besides niche products, probably only the largest
commercial embedded operating system suppliers will survive that development.

Only the largest commercial...? There is one exception: when the same situation came up in the ”mainstream”
computermarket at thebeginningof the 1990ies, people started todevelop analternative to the large commercial
operating systems: Linux. Linux did never start with a ready-to-use solution: people had a problem, searched
for a solution but didn’t find one. Then they started to develop one themselves, often several people did this

5

1 Welcome to the EmbeddedWorld

in parallel, and in a huge community based evolution mechanism the best solutions found their way into the
Linux kernel, which over the time formed one of the most reliable and performant kernels available today. This
”develop-and-evolute” mechanism has shown its effectiveness over and over again in the server and desktop
market of today.

1.2 From Server to Embedded

The fact that for most technical problems that might occur it may be possible to find somebody on the internet
who has already worked on the same or another very similar problem, was one of the major forces behind the
success story of Embedded Linux.

Studies have shown thatmore than 70%of the embedded developers are not satisfiedwith a black-box operating
system: theywant to adapt it to their needs, to their special hardware situation (whichmost times is Just Different
than anything available). Embedded projects are even more variegated than desktop- or server projects, due to
the fact that there exist so many different embedded processors with lots of peripherals out there.

Linux has evolved froman i386only operating system to a kernel running onnearly everymodern 32 bit processor
available today: x86, PowerPC, ARM, MIPS, m68k, cris, Super-H etc. The kernel supplies a hardware abstrac-
tion layer which lets our brave embedded developer once again concentrate on his very special problem, not on
handling negligibilities like memory management.

But Linux is only half of the story. Besides the kernel, a Linux based embedded system consists of a ”userland”:
a filesystem, containing all the small tools which form a small Unix system. Only the combination of the kernel
and a Userland let’s the developer run ”normal” processes on his x86 development machine as well as on his
embedded target.

1.3 Linux = Embedded Linux

Whereas themainstreamdevelopers were always able to use normal Linux distributions like SuSE, RedHat, Man-
drake or Debian as a base for their applications, things are different for embedded systems.

Due to the restricted ressources these systems normally have, distributions have to be small and should only
contain those things that are needed for the application. Today’s mainstream distributions cannot be installed
in less than 100 MiB without major loss of functionality. Even Debian, probably today the most customizable
mainstream distribution, cannot be shrunk below this mark without for example losing the packet management,
which is an essential feature of using a distribution at all.

Additionally, source code for industrial systems has to be

• auditable and

• reproducable.

Embeddeddevelopers usuallywant to knowwhat’s in their systems –be it that they have to support their software
for a long time span (something like 10-15 years are usual product lifetimes in automation applications) or that
they have such a special scenario that they have tomaintain their integrated source of their Userland themselves.

Entering PTXdist.

6

2 Getting a working Environment

2.1 Download Software Components

In order to follow this manual, some software archives are needed. There are several possibilities how to get
these: either as part of an evaluation board package or by downloading them from the Pengutronix web site.

The central place for OSELAS related documentation is http://www.oselas.com. This website provides all re-
quired packages and documentation (at least for software components which are available to the public).

To build OSELAS.BSP-Pengutronix-Generic-2010.01.0, the following archives have to be available on the devel-
opment host:

• ptxdist-2010.01.0.tgz

• ptxdist-2010.01.0-patches.tgz

• OSELAS.BSP-Pengutronix-Generic-2010.01.0.tar.gz

• OSELAS.Toolchain-1.99.3.6.tar.bz2

If they are not available on the development system yet, it is necessary to get them.

2.2 PTXdist Installation

The PTXdist build system can be used to create a root filesystem for embedded Linux devices. In order to start
development with PTXdist it is necessary to install the software on the development system.

This chapter provides information about how to install and configure PTXdist on the development host.

2.2.1 Main Parts of PTXdist

The most important software component which is necessary to build an OSELAS.BSP() board support package
is the ptxdist tool. So before starting any work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

The ptxdist Program: ptxdist is installed on the development host during the installation process. ptxdist is
called to trigger any action, like building a software packet, cleaning up the tree etc. Usually the ptxdist
program is used in a workspace directory, which contains all project relevant files.

A Configuration System: The config system is used to customize a configuration, which contains information
about which packages have to be built and which options are selected.

Patches: Due to the fact that some upstream packages are not bug free – especially with regard to cross compi-
lation – it is often necessary to patch the original software. PTXdist contains amechanism to automatically
apply patches to packages. The patches are bundled into a separate archive. Nevertheless, they are nec-
essary to build a working system.

7

http://www.oselas.com

2 Getting a working Environment

Package Descriptions: For each software component there is a “recipe” file, specifying which actions have to be
done to prepare and compile the software. Additionally, packages contain their configuration sniplet for
the config system.

Toolchains: PTXdist does not come with a pre-built binary toolchain. Nevertheless, PTXdist itself is able to
build toolchains, which are provided by the OSELAS.Toolchain() project. More in-deep information about
the OSELAS.Toolchain() project can be found here: http://www.pengutronix.de/oselas/toolchain/
index_en.html

Board Support Package This is an optional component, mostly shipped aside with a piece of hardware. There
are various BSP available, some are generic, some are intended for a specific hardware.

2.2.2 Extracting the Sources

To install PTXdist, at least two archives have to be extracted:

ptxdist-2010.01.0.tgz The PTXdist software itself.

ptxdist-2010.01.0-patches.tgz All patches against upstreamsoftwarepackets (knownas the ’patch repository’).

ptxdist-2010.01.0-projects.tgz Generic projects (optional), canbeusedas a startingpoint for self-built projects.

The PTXdist and patches packets have to be extracted into some temporary directory in order to be built before
the installation, for example the local/ directory in the user’s home. If this directory does not exist, we have to
create it and change into it:

$ cd

$ mkdir local

$ cd local

Next steps are to extract the archives:

$ tar -zxf ptxdist-2010.01.0.tgz

$ tar -zxf ptxdist-2010.01.0-patches.tgz

and if required the generic projects:

$ tar -zxf ptxdist-2010.01.0-projects.tgz

If everything goes well, we now have a PTXdist-2010.01.0 directory, so we can change into it:

$ cd ptxdist-2010.01.0

$ ls -lF

total 532

-rw-r--r-- 1 jb users 18361 Jan 6 14:50 COPYING

-rw-r--r-- 1 jb users 3865 Jan 6 14:50 CREDITS

-rw-r--r-- 1 jb users 115540 Jan 6 14:50 ChangeLog

-rw-r--r-- 1 jb users 57 Jan 6 14:50 INSTALL

-rw-r--r-- 1 jb users 2228 Jan 6 14:50 Makefile.in

-rw-r--r-- 1 jb users 4196 Jan 6 14:50 README

-rw-r--r-- 1 jb users 691 Jan 6 14:50 REVISION_POLICY

-rw-r--r-- 1 jb users 63019 Jan 6 14:50 TODO

-rwxr-xr-x 1 jb users 28 Jan 6 14:50 autogen.sh

drwxr-xr-x 2 jb users 4096 Jan 6 14:50 bin

drwxr-xr-x 9 jb users 4096 Jan 6 14:50 config

-rwxr-xr-x 1 jb users 213205 Jan 6 16:29 configure

8

http://www.pengutronix.de/oselas/toolchain/index_en.html
http://www.pengutronix.de/oselas/toolchain/index_en.html

2 Getting a working Environment

-rw-r--r-- 1 jb users 12539 Jan 6 14:50 configure.ac

drwxr-xr-x 10 jb users 4096 Jan 6 14:50 generic

drwxr-xr-x 162 jb users 4096 Jan 6 14:50 patches

drwxr-xr-x 2 jb users 4096 Jan 6 14:50 platforms

drwxr-xr-x 4 jb users 4096 Jan 6 14:50 plugins

drwxr-xr-x 6 jb users 32768 Jan 6 14:50 rules

drwxr-xr-x 8 jb users 4096 Jan 6 14:50 scripts

drwxr-xr-x 2 jb users 4096 Jan 6 14:50 tests

2.2.3 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed on the development
host. The configure script will stop if it discovers that something is missing.

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to configure the packet:

$./configure

This will check your system for required components PTXdist relies on. If all required components are found the
output ends with:

[...]

checking whether /usr/bin/patch will work... yes

configure: creating ./config.status

config.status: creating Makefile

config.status: creating scripts/ptxdist_version.sh

config.status: creating rules/ptxdist-version.in

ptxdist version 2010.01.0 configured.

Using ’/usr/local’ for installation prefix.

Report bugs to ptxdist@pengutronix.de

Without further arguments PTXdist is configured to be installed into /usr/local, which is the standard location
for user installed programs. To change the installation path to anything non-standard, we use the --prefix ar-
gument to the configure script. The --help option offers more information about what else can be changed for
the installation process.

The installation paths are configured in a way that several PTXdist versions can be installed in parallel. So if an
old version of PTXdist is already installed there is no need to remove it.

One of the most important tasks for the configure script is to find out if all the programs PTXdist depends on are
already present on the development host. The scriptwill stopwith an errormessage in case something ismissing.
If this happens, themissing tools have to be installed from the distribution befor re-running the configure script.

When the configure script is finished successfully, we can now run

$ make

All program parts are being compiled, and if there are no errors we can now install PTXdist into it’s final location.
In order to write to /usr/local, this step has to be performed as user root:

$ sudo make install

[enter password]

[...]

9

2 Getting a working Environment

If we don’t have root access to the machine it is also possible to install PTXdist into some other directory with
the --prefix option. We need to take care that the bin/ directory below the new installation dir is added to our
$PATH environment variable (for example by exporting it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed:

$ cd ../../

$ rm -fr local

2.2.4 Configuring PTXdist

When using PTXdist for the first time, some setup properties have to be configured. Two settings are the most
important ones: Where to store the source packages and if a proxymust be used to gain access to the world wide
web.

Run PTXdist’s setup:

$ ptxdist setup

Due to PTXdist is working with sources only, it needs various source archives from the world wide web. If these
archives are not present on our host, PTXdist starts the wget command to download them on demand.

Proxy Setup

To do so, an internet access is required. If this access is managed by a proxy wget command must be adviced to
use it. PTXdist can be configured to advice the wget command automatically: Navigate to entry Proxies and enter
the required addresses and ports to access the proxy in the form:

<protocol>://<address>:<port>

Source Archive Location

Whenever PTXdist downloads source archives it stores these archives in a project localmanner. If we areworking
withmore than one project, every project would download its own required archives. To share all source archives
between all projects PTXdist can be configured to use only one archive directory for all projects it handles: Nav-
igate to menu entry Source Directory and enter the path to the directory where PTXdist should store archives to
share between projects.

Generic Project Location

If we already installed the generic projects we should also configure PTXdist to know this location. If we already
did so, we can use the command ptxdist projects to get a list of available projects and ptxdist clone to get a
local working copy of a shared generic project.

Navigate to menu entry Project Searchpath and enter the path to projects that can be used in such a way. Here
we can configure more than one path, each part can be delemited by a colon. For example for PTXdist’s generic
projects and our own previous projects like this:

/usr/local/lib/ptxdist-2010.01.0/projects:/office/my_projects/ptxdist

Leave the menu and store the configuration. PTXdist is now ready for use.

10

2 Getting a working Environment

2.3 Toolchains

Before we can start building our first userland we need a cross toolchain. On Linux, toolchains are nomonolithic
beasts. Most parts of whatwe need to cross compile code for the embedded target comes from theGNUCompiler
Collection, gcc. The gcc packet includes the compiler frontend, gcc, plus several backend tools (cc1, g++, ld etc.)
which actually perform the different stages of the compile process. gcc does not contain the assembler, so we
also need the GNU Binutils packagewhich provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a prefix – the GNU target.
For example, the cross compilers for ARM and powerpc may look like

• arm-softfloat-linux-gnu-gcc

• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for specific machines. So for
example if a C program is to be compiled natively, it works like this:

$ gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler instead of the native one:

$ arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the “toolchain” is the runtime library (libc, dynamic linker). All programs
running on the embedded system are linked against the libc, which also offers the interface from user space
functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler, which is used to build
normal user space code, is being built against the libc itself. For example, if the target does not contain a hardware
floating point unit, but the toolchain generates floating point code, it will fail. This is also the case when the
toolchain builds code for i686 CPUs, whereas the target is i586.

So in order to make things working consistently it is necessary that the runtime libc is identical with the libc the
compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution but a development
tool. But it can be used to build a toolchain for our target. Building the toolchain usually has only to be done
once. It may be a good idea to do that over night, because it may take several hours, depending on the target
architecture and development host power.

2.3.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step with PTXdist may be
omitted.

The OSELAS.BoardSupport() Packages shipped for PTXdist have been tested with the OSE-
LAS.Toolchains() built with the same PTXdist version. So if an external toolchain is being used
which isn’t known to be stable, a target may fail. Note that not all compiler versions and combi-
nations work properly in a cross environment.

Every OSELAS.BoardSupport() Package checks for its OSELAS.Toolchain it’s tested against, so using a different
toolchain vendor requires an additional step:

Open the OSELAS.BoardSupport() Package menu with:

11

2 Getting a working Environment

$ ptxdist platformconfig

and navigate to architecture ---> toolchain and check for specific toolchain vendor. Clear this entry to
disable the toolchain vendor check.

2.3.2 Building a Toolchain

PTXdist handles toolchain building as a simple project, like all other projects, too. So we can download the
OSELAS.Toolchain bundle and build the required toolchain for the OSELAS.BoardSupport() Package.

A PTXdist project generally allows to build into some project defined directory; all OSELAS.Toolchain projects
that come with PTXdist are configured to use the standard installation paths mentioned below.

All OSELAS.Toolchain projects install their result into /opt/OSELAS.Toolchain-1.99.3/.

Usually the /opt directory is not world writeable. So in order to build our OSELAS.Toolchain
into that directory we need to use a root account to change the permissions. PTXdist detects
this case and asks if we want to run sudo to do the job for us. Alternatively we can enter:
mkdir /opt/OSELAS.Toolchain-1.99.3

chown <username> /opt/OSELAS.Toolchain-1.99.3

chmod a+rwx /opt/OSELAS.Toolchain-1.99.3.

We recommend to keep this installation path as PTXdist expects the toolchains at /opt. Wheneverwe go to select
a platform in a project, PTXdist tries to find the right toolchain from data read from the platform configuration
settings and a toolchain at /opt that matches to these settings. But that’s for our convenience only. If we decide
to install the toolchains at a different location, we still can use the toolchain parameter to define the toolchain to
be used on a per project base.

2.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Generic-2010.01.0

To compile and install an OSELAS.Toolchain we have to extract the OSELAS.Toolchain archive, change into the
new folder, configure the compiler in question and start the build.

The required compiler to build the OSELAS.BSP-Pengutronix-Generic-2010.01.0 board support package is

i586-unknown-linux-gnu_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized

So the steps to build this toolchain are:

In order to build any of the OSELAS.Toolchains, the host must provide the tool fakeroot. Other-
wise the message bash: fakeroot: command not foundwill occur and the build stops.

$ tar xf OSELAS.Toolchain-1.99.3.6.tar.bz2

$ cd OSELAS.Toolchain-1.99.3.6

$ ptxdist select ptxconfigs/¿

i586-unknown-linux-gnu_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig

$ ptxdist go

12

2 Getting a working Environment

At this stage we have to go to our boss and tell him that it’s probably time to go home for the day. Even on
reasonably fast machines the time to build an OSELAS.Toolchain is something like around 30 minutes up to a
few hours.

Measured times on different machines:

• Single Pentium 2.5 GHz, 2 GiB RAM: about 2 hours

• Turion ML-34, 2 GiB RAM: about 1 hour 30 minutes

• Dual Athlon 2.1 GHz, 2 GiB RAM: about 1 hour 20 minutes

• Dual Quad-Core-Pentium 1.8 GHz, 8 GiB RAM: about 25 minutes

Another possibility is to read the next chapters of this manual, to find out how to start a new project.

When the OSELAS.Toolchain project build is finished, PTXdist is ready for prime time and we can continue with
our first project.

2.3.4 Protecting the Toolchain

All toolchain components are built with regular user permissions. In order to avoid accidential changes in the
toolchain, the files should be set to read-only permissions after the installation has finished successfully. It is also
possible to set the file ownership to root. This is an important step for reliability, so it is highly recommended.

2.3.5 Building Additional Toolchains

The OSELAS.Toolchain-1.99.3.6 bundle comes with various predefined toolchains. Refer the ptxconfigs/ folder
for other definitions. To build additional toolchainswe only have to clean our current toolchain project, removing
the current selected_ptxconfig link and creating a new one.

$ ptxdist clean

$ rm selected_ptxconfig

$ ptxdist select ptxconfigs/any_other_toolchain_def.ptxconfig

$ ptxdist go

All toolchains will be installed side by side architecture dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part.

Different toolchains for the same architecture will be installed side by side version dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part/version_part.

13

3 PTXdist User’s Manual

This chapter should give any newbie the information he/she needs to be able to handle any embedded Linux
projects based on PTXdist. Also the advanced user may find new valueable information.

3.1 How does it work?

PTXdist supports various aspects of the daily work to develop, deploy and maintain an embedded Linux based
project.

Figure 3.1: Objectives in a project

The most important part is the development. For this project phase, PTXdist provides features to ensure repro-
ducibility and verifiability.

3.1.1 PTXdist’s perception of the world

PTXdist works project centric. A PTXdist project contains all information and files to populate any kind of target
system with all required software components.

• Specific configuration for

– Bootloader

– Kernel

– Userland (root filesystem)

• Adapted files (or generic ones) for runtime configuration

• Patches for all kind of components (to fix bugs or improve features)

14

3 PTXdist User’s Manual

Some of these information or files are coming from the PTXdist base installation (patches for example), but also
can be part of the project itself. By this way, PTXdist can be adapted to any kind of requirement.

Most users are finewith the information and files the PTXdist base installation provides. Development of PTXdist
is done in away to find default settingsmost user canworkwith. But advancedusers can still adapt to their special
needs.

As stated above, a PTXdist project consists of all required parts, some of these parts are separated by design:
PTXdist separates a platform configuration fromuserland configuration (root filesystem). So, platforms can share
a common userland configuration, but use a specific kernel configuration in their own platform configuration.

Collecting various platforms into one single project should help to maintain such projects. But some platforms
do need special userland (think about graphic/non graphic platforms). To be able to also collect this requirement
into one single project, so called collections are supported. With this feature, a user can configure a full featured
main userland, reduced via a collection by some components for a specific platform where it makes no sense to
build and ship them.

PTXdist can handle the following project variations:

• one hardware platform, one userland configuration (common case)

• one hardware platform, various userland configurations

• various hardware platforms, one userland configuration (common case)

• various hardware platforms, one userland configuration, various collections

• various hardware platforms, various userland configuration

• various hardware platforms, various userland configuration, various collections

3.1.2 PTXdist’s build process

When PTXdist is building one part (we call it a package)of the whole project, it is divided into up to six stages:

get The package will be obtained from its source (downloaded from the web for example)

extract The package archive gets extracted and patched if a patch set for this package exists

prepare Many packages can be configured in various ways. If supported, this stage does the configuration in a
way defined in the menu (project specific)

compile The package gets built.

install The package installs itself into a project local directory. This step is important at least for libraries (other
packages may depend on)

targetinstall Relevant parts of the package will be used to build an IPKG archive and the root filesystem

For each single package, one so called rule file exists, describing the steps to be done in each stage shown above
(refer section 5.2 for further details).

Due to the get stage, PTXdist needs a working internet connection to download an archive currently not existing
on the development host. But there are ways to prevent PTXdist from doing so (refer to section 2.2.4).

3.2 First steps with PTXdist

PTXdist works as a console command tool. Everything we want PTXdist to do, we have to enter as a command.
But it’s always the same base command:

15

3 PTXdist User’s Manual

Figure 3.2: The build process

$ ptxdist <parameter>

To run different functions, this commandmust be extended by parameters to define the function wewant to run.

If we are unsure what parameter must be given to obtain a special function, we run it with the parameter help.

$ ptxdist help

This will output all possible parameters ans subcommands and their meaning.

As the list we see is very long, let’s explain the major parameters usually needed for daily usage:

menu This starts a dialog based frontend for those who do not like typing commands. It will gain us access to
the most common parameters to configure and build a PTXdist project.

menuconfig Starts the Kconfig based project configurator for the current selected userland configuration. This
menu will give us access to various userland components that the root filesystem of our target should
consist of.

platformconfig Starts the Kconfig based platform configurator. This menu lets us set up all target specific set-
tings. Major parts are:

• Toolchain (architecture and revision)

• boot loader

• root filesystem image type

• Linux kernel (revision)

Note: A PTXdist project can consist of more than one platform configuration at the same time.

kernelconfig Runs the standard Linux kernel Kconfig to configure the kernel for the current selected platform.
To run this feature, the kernel must be already set up for this platform.

16

3 PTXdist User’s Manual

menuconfig collection If multiple platforms are sharing one userland configuration, collections can define a
subset of all selected packages for specific platforms. This is an advanced feature, rarely used.

toolchain Sets up the path to the toolchain used to compile the current selected platform. Without an additional
parameter, PTXdist tries to guess the toolchain from platform settings. To be successful, PTXdist depends
on the OSELAS.Toolchains installed to the /opt directory.
If PTXdist wasn’t able to autodetect the toolchain, an additional parameter can be given to provide the
path to the compiler, assembler, linker and so on.

select Used to select the current userland configuration, which is only required if there is no selected_ptxconfig
in the project’s main directory. This parameter needs the path to a valid ptxconfig. It will generate a soft
link called selected_ptxconfig in the project’s main directory.

platform Used to select the current platform configuration, which is only required if there is no se-

lected_platformconfig in the project’s main directory. This parameter needs the path to a valid
platformconfig. It will generate a soft link called selected_platformconfig in the project’s main di-
rectory.

collection Used to select the current collection configuration, which is only required in special cases. This pa-
rameter needs the path to a valid collection. It will generate a soft link called selected_collection in the
project’s main directory. This is an advanced feature, rarely used.

go The mostly used command. This will start to build everything to get all the project defined software parts.
Also used to rebuild a part after its configuration was changed.

images Used at the end of a build to create an image from all userland packages to deploy the target (its flash
for example or its hard disk).

setup Mostly run once per PTXdist revision to set up global paths and the PTXdist behavior.

All these commands depending on various files a PTXdist based project provides. So, running the commands
make only sense in directorys that contains a PTXdist based project. Otherwise PTXdist gets confused and con-
fuses the user with funny error messages.

To show the usage of some listed major subcommands, we are using a generic PTXdist based project.

3.2.1 Extracting the Board Support Package

In order to work with a PTXdist based project we have to extract the archive first.

$ tar -zxf OSELAS.BSP-Pengutronix-Generic-2010.01.0.tar.gz

$ cd OSELAS.BSP-Pengutronix-Generic-2010.01.0

PTXdist is project centric, so now after changing into the new directory we have access to all valid components.

total 32

-rw-r--r-- 1 jb users 252 Jan 5 18:18 ChangeLog

-rw-r--r-- 1 jb users 741 Jan 5 18:18 README

drwxr-xr-x 5 jb users 4096 Jan 5 18:15 configs/

drwxr-xr-x 3 jb users 4096 Jan 5 18:15 documentation/

drwxr-xr-x 4 jb users 4096 Jan 5 18:15 patches/

drwxr-xr-x 5 jb users 4096 Jan 5 18:15 projectroot/

drwxr-xr-x 3 jb users 4096 Jan 5 18:15 protocols/

drwxr-xr-x 3 jb users 4096 Jan 5 18:15 rules/

17

3 PTXdist User’s Manual

Notes about some of the files and directories listed above:

ChangeLog Here you can read what has changed in this release. Note: This file does not always exist.

documentation If this BSP is one of our OSELAS BSPs, this directory contains the Quickstart you are currenly
reading in.

configs A multiplatform BSP contains configurations for more than one target. This directory contains the re-
spective platform configuration files.

projectroot Contains files and configuration for the target’s runtime. A running GNU/Linux system uses many
text files for runtime configuration. Most of the time, the generic files from the PTXdist installation will fit
the needs. But if not, customized files are located in this directory.

rules If something special is required to build the BSP for the target it is intended for, then this directory contains
these additional rules.

patches If some special patches are required to build the BSP for this target, then this directory contains these
patches on a per package basis.

tests Contains test scripts for automated target setup.

Next we will build the OSELAS.BSP-Pengutronix-Generic-2010.01.0 to show some of PTXdist’s main features.

3.2.2 Selecting a Userland Configuration

First of all we have to select a userland configuration. This step defines what kind of applications will be built for
the hardware platform. TheOSELAS.BSP-Pengutronix-Generic-2010.01.0 comeswith a predefined configuration
we select in the following step:

$ ptxdist select configs/ptxconfig

info: selected ptxconfig:

’configs/ptxconfig’

3.2.3 Selecting a Hardware Platform

Before we can build this BSP, we need to select one of the possible platforms to build for. In this case we want to
build for the Generic-i586:

$ ptxdist platform configs/i586-qemu-3/platformconfig

info: selected platformconfig:

’configs/i586-qemu-3/platformconfig’

Note: If you have installed the OSELAS.Toolchain() at its default location, PTXdist should already have detected
the proper toolchain while selecting the platform. In this case it will output:

found and using toolchain:

’/opt/OSELAS.Toolchain-1.99.3/i586-unknown-linux-gnu/¿

gcc-4.3.2-glibc-2.8-binutils-2.18-kernel-2.6.27-sanitized/bin’

If it fails you can continue to select the toolchain manually as mentioned in the next section. If this autodetection
was successful, we can omit the steps of the section and continue to build the BSP.

18

3 PTXdist User’s Manual

3.2.4 Selecting a Toolchain

If not automatically detected, the last step in selecting various configurations is to select the toolchain to be used
to build everything for the target.

$ ptxdist toolchain /opt/OSELAS.Toolchain-1.99.3/i586-unknown-linux-gnu/¿

gcc-4.3.2-glibc-2.8-binutils-2.18-kernel-2.6.27-sanitized/bin

3.2.5 Building the Root Filesystem Content

Now everything is prepared for PTXdist to compile the BSP. Starting the engines is simply done with:

$ ptxdist go

PTXdist does now automatically find out from the selected_ptxconfigand selected_platformconfig files which
packages belong to the project and starts compiling their targetinstall stages (that one that actually puts the com-
piled binaries into the root filesystem). While doing this, PTXdist finds out about all the dependencies between
the packages and builds them in correct order.

3.2.6 What we Got Now

After building the project, we find even more sub directories in our project.

platform-i586/build-cross Contains all packages sources compiled to run on the host and handle target archi-
tecture dependend things.

platform-i586/build-host Contains all packages sources compiled to run on the host and handle architecture
independend things.

platform-i586/build-target Contains all package sources compiled for the target architecure.

platform-i586/images Generated files for the target canbe foundhere: Kernel image and root filesystem image.

platform-i586/packages Location for alle individual packages in ipk format.

platform-i586/sysroot-target Contains everything target architecture dependend (libraries, header files and so
on).

platform-i586/sysroot-cross Contains everything that is host specific but must handle target architecture data.

platform-i586/sysroot-host Contains everything that is only host specific.

platform-i586/root Target’s root filesystem image. This directory can be mounted as an NFS root for example.
Note: Due to only root can create device nodes and the build systemmust be run as a non root user, there is
no device node present in this image. At least /dev/console, /dev/nulland /dev/zero should exist. Create
them as user root manually in order to use this directory as an NFS root.

platform-i586/root-debug Target’s root filesystem image. The difference to root/ is, all programs and libraries
in this directory still have their debug information present. This directory is intended to be used as system
root for a debugger. To be used by the debugger, you should setup your debugger with
set solib-absolute-prefix </path/to/workspace>/root-debug

platform-i586/state Building every package is divided onto stages. And stages of one package can depend on
stages of other packages. In order to handle this correctly, this directory contains timestamp files about
finished stages.

This are the generated files:

19

3 PTXdist User’s Manual

platform-i586/logfile Every run of PTXdist will add its output to this file. If something fails, this file can help to
find the cause.

3.2.7 Creating a Root Filesystem Image

After we have built the root filesystem content, we canmake an image, which can be flashed to the target system
or copied on some kind of disk media. To do so, we just run

$ ptxdist images

PTXdist now extracts the content of priorly created *.ipk packages to a temporary directory and generates an
image out of it. PTXdist supports following image types:

• hd.img: contains bootloader, kernel and root files in an ext2 partition. Mostly used for X86 target systems.
• root.jffs2: root files inside a jffs2 filesystem.
• uRamdisk: a u-boot loadable Ramdisk
• initrd.gz: a traditional initrd RAM disk to be used as initrdramfs by the kernel
• root.ext2: root files inside an ext2 filesystem.
• root.squashfs: root files inside a squashfs filesystem.
• root.tgz: root files inside a plain gzip compressed tar ball.

All these files can be found in platform-i586/images.

3.2.8 Running all Parts in an emulated Environment (QEMU)

TheOSELAS.BSP-Pengutronix-Generic-2010.01.0 is prepared to give every user a chance to run the results of the
previous steps even in the absense of real hardware. All we need is a working QEMU on our development host.

Simply run

$./configs/i586-qemu-3/run

This will start QEMU in full system emulation mode and runs the previously built kernel which then uses the
generated disk image to bring up a full Linux based system.

The running system uses a serial device for its communication. QEMU forwards this emulated device to the
current development host console. So, we can watch the starting kernel’s output and log in on this system.

Note: Log in as user ’root’ with no password (just enter).

Leaving this emulated environment happens by entering the key sequence CTRL-A X.

3.3 Adapting the OSELAS.BSP-Pengutronix-Generic-2010.01.0 Project

Handling a fully prepared PTXdist project is easy. But everything is fixed to the settings the developer selected.
We now want to adapt the OSELAS.BSP-Pengutronix-Generic-2010.01.0 project in a few simple settings.

3.3.1 Working with Kconfig

Whenever we modify our project, PTXdist is using Kconfig to manipulate the settings. Kconfigmeans kernel con-
figurator and was mainly developed to configure the Linux kernel itself. But it is easy to adapt, to use and so
popular that more and more projects are using Kconfig for their purposes. PTXdist is one of them.

20

3 PTXdist User’s Manual

What is Kconfig

It is a user interface to select given resources in a convenient way. The resources that we can select are given in
simple text files. It uses a powerful ”language” in these text files to organize them in a hierarchicalmanner, solves
challenges like resource dependencies, supports help and search features. PTXdist uses all of these features.
Kconfig supports a text based user interface by using the ncurses library to manipulate the screen content and
should work on nearly all host systems.

For example running PTXdist’s menuconfig subcommand in this way

$ ptxdist menuconfig

will show the following console output

Figure 3.3: Main userland configuration menu

Navigate in Kconfig menu (select, search, ...)

To navigate through the configuration tree, we are using the arrow keys. Up and down navigates vertically in the
menu entries. Right and left navigates between Select, Exit and Help (in the bottom part of our visual screen).

To enter one of the menus, we navigate to this entry to highlight it and press the Enter key. To leave it, we select
Exit and press the Enter key again. There are shortcuts available, instead of pressing the Enter key to enter amenu
we also can press alt-s and to leave a menu alt-e. Also an ESC double hit leaves any menu we are in.

21

3 PTXdist User’s Manual

To select a menu entry, we use the Space key. This will toggle the selection. Or, to bemore precise and faster, we
use the key y to select an entry, and key n to deselect it.

To get help for a specificmenu topic, we navigate vertically to highlight it and horizontally to select theHelp entry.
Then we can press Enter to see the help.

To search for specific keywords, we press the / key and enter aword. Kconfig then lists all occurences of this word
in all menus.

Meaning of visual feedbacks in Kconfig

• Submenus to enter are marked with a trailing �>
Note: Some submenus are also marked with a leading bracket []. To enter them we first must select/en-
able them [*]

• Entries with a list of selectable alternatives are also marked with a trailing �>

• Entries we can select are marked with a leading empty bracket []

• Entries that are already selected are marked with a leading filled bracket [*]

• Entries that are selected due to dependencies into other selected entries are marked with a leading �

• Some entries need a free text to enter, they are marked with leading brackets () and the free text in it

Menus and submenus in Kconfig (sectioning)

There are dozens of entries in the PTXdist configuring menus. To handle them, they are divided and separated
into logical units.

The main building blocks in the userland configurationmenu are:

• Host Options: Some parts of the project are build host relevant only. For example PTXdist can build the
DDD debugger to debug applications running on the target.

• Root Filesystem: Settings to arrange target’s root filesystem and to select the main C runtime library

• Applications: Everything we like to run on your target.

The main building blocks in the platform configurationmenu are:

• Architecture: Basic settings, like the main and sub architecture the target system uses, the toolchain to be
used to build everything and some other architecture dependent settings.

• Linux kernel: Which kernel revision and kernel configuration should be used

• Bootloader: Which bootloader (if any) should be built in the project

• The kind of image to populate a root filesystem into the target system

The main building blocks in the board setup configurationmenu are:

• Network: Network settings for the target

• Host: Host setup to be able to reach the target system

At this point it could be useful to walk to the whole menus and their submenus to get an idea about the amount
of features and applications PTXdist currently supports.

22

3 PTXdist User’s Manual

3.3.2 Adapting Platform Settings

Some parts of the OSELAS.BSP-Pengutronix-Generic-2010.01.0 project are platform specific (in contrast to the
userland configuration that could be shared between platforms). We now want to change the used Linux kernel
of our current i586-qemu-3 platform. It comes with a default linux-2.6.31 and we want to change it to a more
recent linux-2.6.32.

To do so, we run:

$ ptxdist menuconfig platform

In this Kconfig dialogue we navigate to the entry:

[*] Linux kernel --->

(2.6.31) kernel version

and replace the 2.6.31 value by the 2.6.32 value. Now we leave the menu and save the new settings.

A Linux kernel needs a configuration for being built correctly. The OSELAS.BSP-Pengutronix-Generic-2010.01.0
project comes with a prepared configuration in the file configs/i586-qemu-3/kernelconfig for the 2.6.31 kernel.

It is always a good idea to start with a known-to-work kernel configuration. So, in this case, we continue using
the configs/i586-qemu-3/kernelconfig file even for our new 2.6.32 kernel.

But due to the update to amore recent kernel revision, we should check in the next step if the newkernel supports
more or different features for our platform.

3.3.3 Adapting Linux Kernel Settings

In this section we want to show how to change some Linux kernel settings of our OSELAS.BSP-Pengutronix-
Generic-2010.01.0project.

First of all, we run

$ ptxdist menuconfig kernel

This commandwill start the kernel’s Kconfig. For this example wewant to enable USB host support in the kernel.
To do so, we navigate to:

Device Drivers --->

[] USB support --->

< > Support for Host-side USB

< > OHCI HCD support

Note: All the listed empty [] and < > above must be activated to get all submenu entries.

We leave the menu and save the new kernel configuration.

To start building a new kernel with the new configuration, we again run:

$ ptxdist go

This builds or re-builds the kernel, because we changed its settings.

Note: If nothing was changed, ptxdist go also will do nothing.

When PTXdist has finished its job, the new bootable kernel can be found at platform-i586/images/linuximage.
To boot it again in the QEMU emulation, the hard disk image must be re-created with:

23

3 PTXdist User’s Manual

$ ptxdist images

$./configs/i586-qemu-3/run

The emulated system should now start with a 2.6.32 based kernel with USB support.

3.3.4 Adapting Userland Settings

After changing some platform and kernel settings, we are now reaching the most interesting area: Userland.

In the userland area we can enable and use all the applications and services PTXdist provides. Many of them are
working out of the box when enabled and executed on the target side. Some need additional runtime configura-
tion, but PTXdist comes with most common configurations for such packages.

In this simple example, we want to add the missing head command to our target’s shell. First we run:

$ ptxdist menuconfig

The additional command we want to enable is provided by the Busybox package. So we navigate to:

Shell & Console Tools --->

-*- busybox --->

Coreutils --->

[] head

After activating the [] head entry, we leave the menu and save the new configuration.

Once again, a

$ ptxdist go

will build or re-build the busybox package due to its configuration change.

And also once again, after finishing its job, the following commands let us test the new command:

$ ptxdist images

$./configs/i586-qemu-3/run

Log in on the emulated system and simply check with a:

ptx login: root

login[xxx]: root login on ’ttyS0’

root@ptx:~ head /etc/fstab

#

/etc/fstab

#

special filesystems

proc /proc proc defaults 0 0

debugfs /sys/kernel/debug debugfs defaults,noauto 0 0

devpts /dev/pts devpts defaults 0 0

none /tmp tmpfs defaults,mode=1777,uid=0,gid=0 0 0

none /sys sysfs defaults 0 0

24

3 PTXdist User’s Manual

We are done now. These simple examples should give the users a quick feeling how things areworking in PTXdist
and how to modify them. Adapting this generic BSP to a different platform with nearly the same features as our
reference platforms is possible with this knowledge.

But most of the time, a user needs more detailed adaptions to be able to fit all requirements of the new platform.
At this point of time we are no longer ordinary users of PTXdist, we become developers now.

So, right now its time to read the PTXdist Developer’s Manual

25

4 PTXdist Developer’s Manual

This chapter will show all (or most) of the details of how PTXdist works.

• where are the files stored that PTXdist uses when building packages

• how patching works

• where is PTXdist fetching a package’s runtime configuration files from

• how to control a package’s build stages

• how to add new packages

4.1 PTXdist’s directory hierarchy

Note: Referenced directories aremeant relative to the PTXdistmain installation location (if not otherwise stated).
If not configured differently, this main path is /usr/local/lib/ptxdist-2010.01.0

4.1.1 Rule Files

When building a single package, PTXdist needs the information on how to handle the package, i.e. on how to get
it from the source up to what the target needs at runtime. This information is provided by a rule file per package.

PTXdist collects all rule files in its rules/ directory. Whenever PTXdist builds something, all these rule files are
scanned at once. These rule files are global rule files, valid for all projects. PTXdist uses a mechanism to be able
to add or replace specific rule files on a per project base. If a rules/ directory exists in the current project, its
content is scanned too. These project local rule files are used in addition to the global rule files or – if they are
using the same name as a global rule file – replacing the global rule file.

The replacing mechanism can be used to extend or adapt packages for specific project requirements. Or it can
be used for bug fixing by backporting rule files from more recent PTXdist revisions to projects that are stuck to
an older PTXdist revision for maintenance only.

4.1.2 Patch Series

There are many packages in the wild that are not cross build aware. They fail compiling some files, use wrong
include paths or try to link against host libraries. To be sucessful in the embedded world, these types of failures
must be fixed. If required, PTXdist provides such fixes per package. They are organized in patch series and can
be found in the patches/ directory within a subdirectory using the same name as the package itself.

PTXdist uses the utility patchor quilt to apply an existing patch series after extracting the archive. So, every patch
series contains a set of patches and one series file to define the order in which the patches must be applied.

Note: Patches can be compressed.

26

4 PTXdist Developer’s Manual

Besides the patches/ directory at the main installation location, PTXdist searches two additional locations for a
patch series for the package in question.

One location is the project’s currently used platform directory. If the currently used platform is located in
configs/i586-qemu-3, PTXdist searches in ./configs/i586-qemu-3/patches/<package name>.

If no patch series was found in the platform directory, the next location PTXdist it searches for a patch series is
the main project directory in ./patches/<package name>.

If both project local locations do not provide a patch series for the specific package, PTXdist falls back to the
patches/ directory at its main installation location.

This search order can be used to use specific patch series for specific cases.

• platfom specific

• project specific

• common case

• bug fixing

The bug fixing case is used in accordance to a replacement of a rule file. If this was done due to a backport, and
the more recent PTXdist revision does not only exchange the rule file but also the patch series, this mechanism
ensures that both relevant parts can be updated in the project.

4.1.3 Runtime Configuration

Many packages are using runtime configuration files along with their executables and libraries. PTXdist provides
default configuration files for the most common cases. These files can be found in the generic/etcdirectory and
they are using the same names as the ones at runtime (and their install directory on the target side will also be
/etc).

But some of these default configuration files are empty, due to the absence of a common case. The project must
provide replacements of these files with a more useful content in every case where the (empty) default one does
not meet the target’s requirements.

PTXdist first searches the project local ./projectroot/etcdirectory for a specific configuration file and falls back
to use the default one if none exists locally.

A popular example is the configuration file /etc/fstab. The default one coming with PTXdist works for the
most common cases. But if our project requires a special setup, we can just copy the default one to the local
./projectroot/etc/fstab, modify it and we are done. The next time PTXdist builds the root filesystem it will use
the local fstab instead of the global (default) one.

4.2 Adding new Packages

PTXdist provides a huge amount of applications sufficient for the most embedded use cases. But there is still
need for some fancy new packages. This section describes the steps and the background on how to intergrate
new packages into the project.

At first a summary about possible application types which PTXdist can handle:

27

4 PTXdist Developer’s Manual

• host type: This kind of package is built to run on the build host. Most of the time such a package is needed
if another target relevant package needs to generate some data. For example the glib package depends
on its own to create some data. But if it is compiled for the target, it can’t do so. That’s why a host glib
package is required to provide these utilities runnable on the build host. It sounds strange to build a host
package, even if on the build host such utilities are already installed. But this way ensures that there are
no dependencies regarding the build host system.

• target type: This kind of package is built for the target.

• cross type: This kind of package is built for the build host, but creates architecture specific data for the
target.

• klibc type: This kind of package is built against klibc to be part of an initramfs for the target.

• src-autoconf-prog: This kindof package is built for the target. It is intended for development, as it doesnot
handle a released archive but a plain source project instead. Creating such a package will also on demand
create a small autotools based source template project to give the developer an easy point to start. This
template is prepared to build a single executable program.

• src-autoconf-lib: This kind of package is built for the target. It is intended for development, as it does not
handle a released archive but a plain source project instead. Creating such a package will also on demand
create a small autotools/libtool based source template project to give the developer an easy point to start.
This template is prepared to build a single shared library.

• src-autoconf-proglib: This kind of package is built for the target. It is intended for development, as it
does not handle a released archive but a plain source project instead. Creating such a package will also
on demand create a small autotools/libtool based template project to give the developer an easy point
to start. This template is prepared to build a single shared library and a single executable program. The
program will be linked against the shared library.

4.2.1 Rule File Creation

To create such a new package, we create a project local rules/ directory first. Then run

$ ptxdist newpacket <package type>

If we omit the <package type>, PTXdist will list all available package types.

In our first example, we want to add a new target type archive package. When running the

$ ptxdist newpacket target

command, PTXdist asks a few questions about this package. This information is the basic data PTXdist must
know about the package.

ptxdist: creating a new ’target’ package:

ptxdist: enter packet name.......: foo

ptxdist: enter version number....: 1.1.0

ptxdist: enter URL of basedir....: http://www.foo.com/download/src

ptxdist: enter suffix............: tar.gz

ptxdist: enter packet author.....: My Name <me@my-org.com>

What we have to answer:

• packet name: As this kind of package handles a source archive, the correct answer here is the basename
of the archive’s file name. If its full name is foo-1.1.0.tar.gz, then foo is the basename to enter here.

28

4 PTXdist Developer’s Manual

• version number: Most source archives are using a release or version number in their file name. If its full
name is foo-1.1.0.tar.gz, then 1.1.0 is the version number to enter here.

• URL of basedir: This URL tells PTXdist where to download the source archive from the web (if not already
done). If the full URL to download the archive is http://www.foo.com/download/src/foo-1.1.0.tar.gz,
the basedir part http://www.foo.com/download/src is to enter here.

• suffix: Archives are using various formats for distribution. PTXdist uses the suffix entry to select thematch-
ing extraction tool. If the archive’s full name is foo-1.1.0.tar.gz, then tar.gz is the suffix to enter here.

• packet author: If we intend to contribute this new package to PTXdist mainline, we should add our name
here. This name will be used in the copyright note of the rule file and will also be added to the generated
ipkg.

4.2.2 Make it Work

Generating the rule file is only one of the required steps to get a new package. The next steps to make it work
are to check if all stages are working as expected and to select the required parts to get them installed in the
target root filesystem. Also we must find a reasonable location where to add our new menu entry to configure
the package.

The generated skeleton starts to add the new menu entry in the main configure menu. Running ptxdist

menuconfigwill show it on top of all other menus entries. To be able to implement all the other required steps for
adding a new package, we first must enable the package for building (fine tuning the menu can be the last step).

Lets start checking the get and extract stage, calling themmanually one after another.

$ ptxdist get foo

target: foo-1.1.0.tar.gz

--2009-12-21 10:54:45-- http://www.foo.com/download/src/foo-1.1.0.tar.gz

Length: 291190 (284K) [application/x-gzip]

Saving to: ‘/global_src/foo-1.1.0.tar.gz.XXXXOGncZA’

100%[======================================>] 291,190 170K/s in 1.7s

2009-12-21 10:54:48 (170 KB/s) - ‘/global_src/foo-1.1.0.tar.gz’ saved [291190/291190]

This command should start to download the source archive. If it fails, we should check our network connection
and if the URL in use is correct.

$ ptxdist extract foo

target: foo.extract

extract: archive=/global_src/foo-1.1.0.tar.gz

extract: dest=/home/jbe/my_new_prj/build-target

PATCHIN: packet=foo-1.1.0

PATCHIN: dir=/home/jbe/my_new_prj/build-target/foo-1.1.0

PATCHIN: no patches for foo-1.1.0 available

Fixing up /home/jbe/my_new_prj/build-target/foo-1.1.0/configure

finished target foo.extract

29

4 PTXdist Developer’s Manual

In this example we expect an autotoolized source package. E.g. to prepare the build, the archive comes with
a configure script. This is the default case for PTXdist. So, there is no need to modify the rule file and we can
simply run:

$ ptxdist prepare foo

target: foo.prepare

[...]

checking build system type... i686-host-linux-gnu

checking host system type... i586-unknown-linux-gnu

checking whether to enable maintainer-specific portions of Makefiles... no

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /bin/mkdir -p

checking for gawk... gawk

checking whether make sets $(MAKE)... yes

checking for i586-unknown-linux-gnu-strip... i586-unknown-linux-gnu-strip

checking for i586-unknown-linux-gnu-gcc... i586-unknown-linux-gnu-gcc

checking for C compiler default output file name... a.out

[...]

configure: creating ./config.status

config.status: creating Makefile

config.status: creating ppa_protocol/Makefile

config.status: creating config.h

config.status: executing depfiles commands

finished target foo.prepare

At this stage things can fail:

• The configure script is not cross compile aware

• The package depends on external components (libraries for example)

If the configure script is not cross compile aware, we are out of luck. We must patch the source archive in this
case to make it work. Refer to section 4.2.6 on how to use PTXdist’s features to simplify this task.
If the package depends on expternal components, these components might be already part of PTXdist. In this
case we just have to add this dependency into the menu file and we are done. But if PTXdist cannot fulfill this
dependency, we also must add it as a separate package first.

If the prepare stage has finished successfully, the next step is to compile the package.

$ ptxdist compile foo

target: foo.compile

make[1]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make all-recursive

make[2]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[3]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

30

4 PTXdist Developer’s Manual

[...]

make[3]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[2]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[1]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

finished target foo.compile

At this stage things can fail:

• The build system is not cross compile aware (it tries to execute just created target binaries for example)

• The package depends on external components (libraries for example) not detected by configure

• Sources are ignoring the endianess of some architectures or using header files from the build host system
(from /usr/include for example)

• The linker uses libraries from the build host system (from /usr/lib for example) by accident

In all of these cases wemust patch the sources tomake themwork. Refer to section 4.2.4 on how to use PTXdist’s
features to simplify this task.

In this example we expect the best case: Everything went fine, even for cross compiling. So, we can continuewith
the next stage: install

$ ptxdist install foo

target: foo.install

make[1]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[2]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[3]: Entering directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

test -z ”/usr/bin” /bin/mkdir -p ”/home/jbe/my_new_prj/build-target/foo-1.1.0/usr/bin”

/usr/bin/install -c ’foo’ ’/home/jbe/my_new_prj/build-target/foo-1.1.0/usr/bin/foo’

make[3]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[2]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

make[1]: Leaving directory ‘/home/jbe/my_new_prj/build-target/foo-1.1.0’

finished target foo.install

target: foo.install.post

finished target foo.install.post

This install stage does not install anything to the target root filesystem. It is mostly intended to install libraries
that other programs should link against later on.

The last stage – targetinstall – is the one that defines the package’s components to be forwarded to the target’s
root filesystem. Due to the absence of a generic way, this is the task of the developer. So, at this point of time we
must run our favourite editor and modify our new rule file ./rules/foo.make.

The skeleton for the targetinstall stage looks like this:

--

Target-Install

31

4 PTXdist Developer’s Manual

--

$(STATEDIR)/foo.targetinstall:

@$(call targetinfo)

@$(call install_init, foo)

@$(call install_fixup, foo,PACKAGE,foo)

@$(call install_fixup, foo,PRIORITY,optional)

@$(call install_fixup, foo,VERSION,$(FOO_VERSION))

@$(call install_fixup, foo,SECTION,base)

@$(call install_fixup, foo,AUTHOR,”My Name <me@my-org.com>”)

@$(call install_fixup, foo,DEPENDS,)

@$(call install_fixup, foo,DESCRIPTION,missing)

@$call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/foobar, /dev/null)

@$(call install_finish, foo)

@$(call touch)

The ”header” of this stage defines some information IPKG needs. The important part that we must modify is the
call to the install_copymacro (refer to section 5.1 for more details about this kind of macros). This call instructs
PTXdist to include the given file (with PID, UID and permissions) into the IPKG, which means to install this file to
the target’s root filesystem.

From the previous install stage we know this package installs an executable called foo to location /usr/bin. We
can do the same for our target by changing the install_copy line to:

@$(call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/foo, /usr/bin/foo)

To check it, we just run:

$ ptxdist targetinstall foo

target: foo.targetinstall

install_init: preparing for image creation...

install_init: @ARCH@ -> i386 ... done

install_init: preinst not available

install_init: postinst not available

install_init: prerm not available

install_init: postrm not available

install_fixup: @PACKAGE@ -> foo ... done.

install_fixup: @PRIORITY@ -> optional ... done.

install_fixup: @VERSION@ -> 1.1.0 ... done.

install_fixup: @SECTION@ -> base ... done.

install_fixup: @AUTHOR@ -> ”My Name <me\@my-org.com>” ... done.

install_fixup: @DESCRIPTION@ -> missing ... done.

install_copy:

src=/home/jbe/my_new_prj/build-target/foo-1.1.0/foo

dst=/usr/bin/foo

owner=0

group=0

permissions=0755

xpkg_finish: collecting license (unknown) ... done.

32

4 PTXdist Developer’s Manual

xpkg_finish: creating ipkg package ... done.

finished target foo.targetinstall

target: foo.targetinstall.post

finished target foo.targetinstall.post

After this command, the target’s root filesystem contains a file called /usr/bin/foo owned by root, its group is
also root and everyone has execution permissions, but only the user root has write permissions.

One last task of this port is still open: A reasonable location for the newmenu entry in PTXdist’s menu hierarchy.
PTXdist arranges itsmenus on themeaning of each package. Is it a network related tool? Or a scripting language?
Or a graphical application?
Each of these global meanings have their own submenu, where we can add our new entry to. We just have to
edit the head of our new menu file to add it to a specific global menu. If our new package is a network related
tool, the head of the menu file should look like:

SECTION=networking

We can grep through the othermenu files from the PTXdist main installation rules/directory to get an idea what
section names are available:

rules/ $ find . -name *.in | xargs grep ”## SECTION”

./acpid.in:## SECTION=shell_and_console

./alsa-lib.in:## SECTION=system_libraries

./alsa-utils.in:## SECTION=multimedia_sound

./apache2.in:## SECTION=networking

./apache2_mod_python.in:## SECTION=networking

[...]

./klibc-module-init-tools.in:## SECTION=initramfs

./xkeyboard-config.in:## SECTION=multimedia_xorg_data

./xorg-app-xev.in:## SECTION=multimedia_xorg_app

./xorg-app-xrandr.in:## SECTION=multimedia_xorg_app

./host-eggdbus.in:## SECTION=hosttools_noprompt

./libssh2.in:## SECTION=networking

Porting a new package to PTXdist is finished now.

To check it right away, we simply run these two commands:

$ ptxdist clean foo

rm -rf /home/jbe/my_new_prj/state/foo.*

rm -rf /home/jbe/my_new_prj/packages/foo_*

rm -rf /home/jbe/my_new_prj/build-target/foo-1.1.0

$ ptxdist targetinstall foo

[...]

4.2.3 Advanced Rule Files

The previous example on how to create a rule file sometimes works as shown above. But most of the time source
archives are not that simple. In this section we want to give the user a more detailed selection how the package
will be built.

33

4 PTXdist Developer’s Manual

Adding Static Configure Parameters

The configure scripts of various source archives provide additional parameters to enable or disable features, or
to configure them in a specific way.

We assume the configure script of our foo example (refer to section 4.2.1) supports two additional parameters:

• --enable-debug: Make the programmore noisy. It’s disabled by default.

• --with-bar: Also build the special executable bar. Building this executable is also disabled by default.

We now want to forward these options to the configure script when it runs in the prepare stage. To do so, we
must again open the rule file with our favourite editor and navigate to the prepare stage entry.

PTXdist uses the variable FOO_AUTOCONF as the list of parameters to be given to configure.

Currently this variable is defined to:

FOO_AUTOCONF := $(CROSS_AUTOCONF_USR)

The variable CROSS_AUTOCONF_USR is predefinedby PTXdist and contains all basic parameters to instruct configure
to prepare for a cross compile environment.

To use the two additional mentioned configure parameters, we supplement this expression as follows:

FOO_AUTOCONF := $(CROSS_AUTOCONF_USR) \

--enable-debug \

--with-bar

Note: We recommend to use this format with each parameter on a line of its own. That is easier to read and a
diff shows more exactly any change.

To do a fast check if this addition was successful, we run:

$ ptxdist print FOO_AUTOCONF

--prefix=/usr --sysconfdir=/etc --host=i586-unknown-linux-gnu --build=i686-host-linux-gnu --enable-debug ¿

--with-bar

Or re-build the package with the new settings:

$ ptxdist drop foo prepare

$ ptxdist targetinstall foo

Adding Dynamic Configure Parameters

Sometimes it makes sense to add this kind of parameters on demand only; especially a parameter like
--enable-debug. To let the user decide if this parameter is to be used or not, we must add a menu entry. So,
let’s expand our menu. Here is its current content:

SECTION=fixme

config FOO

tristate

prompt ”foo”

help

FIXME

34

4 PTXdist Developer’s Manual

We’ll add two menu entries, one for each optional parameter we want to add on demand to the configure pa-
rameters:

SECTION=fixme

config FOO

tristate

prompt ”foo”

help

FIXME

if FOO

config FOO_DEBUG

bool

prompt ”add debug noise”

config FOO_BAR

bool

prompt ”build bar”

endif

Note: To extend the base name by a suboption name as a trailing component gives PTXdist the ability to detect
a change in the package’s settings to force its rebuild.

To make usage of the new menu entries, we must check them in the rule file and add the correct parameters:

#

autoconf

#

FOO_AUTOCONF := $(CROSS_AUTOCONF_USR)

ifdef PTXCONF_FOO_DEBUG

FOO_AUTOCONF += --enable-debug

else

FOO_AUTOCONF += --disable-debug

endif

ifdef PTXCONF_FOO_BAR

FOO_AUTOCONF += --with-bar

else

FOO_AUTOCONF += --without-bar

endif

It is a good practice to add both settings, e.g. --disable-debug even if this is the default case. Sometimes
configure tries to guess something and the binary result might differ depending on the build order. For example
some kind of package would also build some X related tools, if X libraries are found. In this case it depends on
the build order, if the X related tools are built or not. All the autocheck features are problematic here. So, if we
do not want configure to guess its settings wemust disable everything we do not want

If some parts of a package are built on demand only, they must also be installed on demand only. Besides the
prepare stage, we also must modify our targetinstall stage:

[...]

@$(call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/foo, /usr/bin/foo)

35

4 PTXdist Developer’s Manual

ifdef PTXCONF_FOO_BAR

@$(call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/bar, /usr/bin/bar)

endif

@$(call install_finish, foo)

@$(call touch)

[...]

Now we can play with our new menu entries and check if they are working as expected:

$ ptxdist menuconfig

$ ptxdist targetinstall foo

Whenever we change a FOO related menu entry, PTXdist should detect it and re-build the package when a new
build is started.

Managing External Compile Time Dependencies

While running the prepare stage, it could happen that it fails due to a missing external dependency.

For example:

[...]

checking whether zlib exists....failed

In this example, our new package depends on the compression library zlib. PTXdist comes with a target zlib. All
we need to do in this case is to declare that our new package foo depends on zlib. This kind of dependencies
is managed in the menu file of our new package by simply adding the select ZLIB line. After this addition our
menu file looks like:

SECTION=fixme

config FOO

tristate

select ZLIB

prompt ”foo”

help

FIXME

if FOO

config FOO_DEBUG

bool

prompt ”add debug noise”

config FOO_BAR

bool

prompt ”build bar”

endif

PTXdist now builds the zlib first and our new package thereafter.

36

4 PTXdist Developer’s Manual

Managing External Compile Time Dependencies on Demand

It is good practice to add only those dependecies that are really required for the current configuration of the
package. If the package provides the features foo and bar and its configure provides switches to enable/disable
them independently, we can also add dependencies on demand. Let’s assume feature fooneeds the compression
library libz andbar needs theXML2 library libxml2. These libraries are only required at runtime if the correspondig
feature is enabled. To add these dependencies on demand, the menu file looks like:

SECTION=fixme

config FOO

tristate

select ZLIB if FOO_FOO

select LIBXML2 if FOO_BAR

prompt ”foo”

help

FIXME

if FOO

config FOO_DEBUG

bool

prompt ”add debug noise”

config FOO_FOO

bool

prompt ”build foo”

config FOO_BAR

bool

prompt ”build bar”

endif

Note: Do not add these select statements to the correspondig menu entry. They must belong to the main menu
entry of the package to ensure that the calculation of the dependencies between the packages is done in a correct
manner.

Managing External Runtime Dependencies

Some packages are building all of their components and also installing them into the target’s sysroot. But only
their targetinstall stage decides which parts are copied to the root filesystem. So, compiling and linking of our
package will work, because everything required is found in the target’s sysroot.

In our example there is a hidden dependency to the math library libm. Our new package was built successfully,
because the linker was able to link our binaries against the libm from the toolchain. But in this case the libm

must also be available in the target’s root filesystem to fulfil the runtime dependency: We have to force PTXdist
to install libm. libm is part of the glibc package, but is not installed by default (to keep the root filesystem small).
So, it does not help to select the GLIBC symbol, to get a libm at runtime.

The correct solution here is to add a select LIBC_M to our menu file. With all the additions above it now looks
like:

SECTION=fixme

37

4 PTXdist Developer’s Manual

config FOO

tristate

select ZLIB if FOO_FOO

select LIBXML2 if FOO_BAR

select LIBC_M

prompt ”foo”

help

FIXME

if FOO

config FOO_DEBUG

bool

prompt ”add debug noise”

config FOO_FOO

bool

prompt ”build foo”

config FOO_BAR

bool

prompt ”build bar”

endif

Note: There are other packages around, that do not install everything by default. If our new package needs
something special, wemust take a look into themenuof the other package how to force the required components
to be installed and add the corresponding selects to our own menu file. In this case it does not help to enable
the required parts in our project configuration, because this has no effect on the build order!

Managing Non Autotool Packages

Many packages are still coming with a plain Makefile. The user has to adapt it to make it work in a cross compile
environment as well. PTXdist can also handle this kind of packages. We only have to specifiy a special prepare
and compile stage.

Such packages often have no special need for any kind of preparation. We can omit this stage by defining this
empty rule:

$(STATEDIR)/foo.prepare:

@$(call targetinfo)

@$(call touch)

To compile the package, we can use make’s feature to overwrite variables used in the Makefile. With this feature
we can still use the original Makefile but with our own (cross compile) settings.

Most of the time the generic compile rule can be used, only a few settings are required.

makewill be called in this case with:

cd $(FOO_DIR) && $(FOO_MAKE_ENV) $(MAKE) $(FOO_MAKE_OPT)

So, in the rule file only the two variables FOO_MAKE_ENV and FOO_MAKE_OPT must be set, to forward the re-
quired settings to the package’s buildsystem. If the package cannot be built in parallel, we can also add the
FOO_MAKE_PAR := NO. YES is the default.

Note: FOO is still the name of our example package. It must be replaced by the real package name.

38

4 PTXdist Developer’s Manual

4.2.4 Patching Packages

There can be various reasons why a package must be patched:

• Package is broken for cross compile environments

• Package is broken within a specific feature

• Package is vulnerable and needs some fixes

• or anything else

PTXdist handles patching automatically. After extracting the archive, PTXdist checks for the existence of a patch
directory with the same name as the package. If our package’s name is foo-1.1.0, PTXdist searches for patches
in:

1. platform (./configs/i586-qemu-3/patches/foo-1.1.0)

2. project (./patches/foo-1.1.0)

3. ptxdist (<ptxdist installation>/path/patches/foo-1.1.0)

The patches from the first location found are used. Note: Due to this search order, a PTXdist project can replace
global patches from the PTXdist installation. This can be useful if a project sticks to a specific PTXdist revision
but fixes from a more recent revision of PTXdist should be used.

4.2.5 Creating Patches for a Package

PTXdist uses the utilities patch or quilt to work with patches or patch series. We recommend quilt, as it can
manage patch series in a very easy way. For this manual we assume quilt is installed on the build host.

Creating a Patch Series for a Package

To create a patch series for the first time, we can run the following steps. We are still using our foo-1.1.0 example
package here:

We create a special directory for the patch series in the local project directory:

$ mkdir -p patches/foo-1.1.0

PTXdist expects a series file in the patch directory. Otherwise it fails. Due to the fact that we do not have any
patch yet, we’ll start with an empty series file.

$ touch patches/foo-1.1.0/series

Next is to extract the package (if already done, we must remove it first):

$ ptxdist extract foo

This will extract the archive and create a symbolic link in the build directory pointing to our local patch directory.
Working thiswaywill ensure thatwedonot lose our createdpatches ifwe enter ptxdist clean fooby accident. In
our case the patches are still present in patches/foo-1.1.0 and can be used the next time we extract the package
again.

39

4 PTXdist Developer’s Manual

All we have to do now is to do the modification we need to make the package work. We change into the build
directory and use quilt to create new patches, add files to respective patches, modify these files and refresh the
patches to save our changes.

We recommend thiswaywhenmodifying source files. But thisway is improperwhenanautotools basedbuildsys-
tem itself needs modifications. Refer to section 4.2.6 on how PTXdist can handle this special task.

Adding more Patches to a Package

If we want to add more patches to an already patched package, we can use nearly the same way as creating
patches for the first time. But if the patch series comes from the PTXdist main installation, we do not have write
permissions to these directories (do NEVER work on the main installation directories, NEVER, NEVER, NEVER).
Due to the search order inwhich PTXdist searches for patches for a specific package, we can copy the global patch
series to our local project directory. Now we have the permissions to add more patches or modify the existing
ones. Also quilt is our friend here to manage the patch series.

If we think that our new patches are valuable also for others, or they fix an error, it could be a good idea to send
these patches to PTXdist mainline.

4.2.6 Modifying Autotoolized Packages

Autotoolized packages are very picky when automatically generated files get patched. The patch order is very
important in this case and sometimes it even fails and nowbody knows why.

To improve a package’s autotools-based build system, PTXdist comes with its own project local autotools to
regenerate the autotools template files, instead of patching them. With this feature, only the template files must
be patched, the required configure script and the Makefile.in files are regenerated in the final stages of the
prepare step.

This feature works like the regular patching mechanism. The only difference is the additional autogen.sh file in
the patch directory. If it exists and has execution permissions, it will be called after the package was patched
(while the extract stage is running).

Its content depends on developer needs; for the most simple case the content can be:

#!/bin/bash

aclocal $ACLOCAL_FLAGS

libtoolize \

--force \

--copy

autoreconf \

--force \

--install \

--warnings=cross \

--warnings=syntax \

--warnings=obsolete \

--warnings=unsupported

Note: This way also still not autotoolized package can be autotoolized. We just have to add the common auto-
tool template files (configure.ac and Makefile.am for example) via a patch series to the package source and the
autogen.sh to the patch directory.

40

5 PTXdist Reference

5.1 Rule File Macro Reference

Rules files in PTXdist are using macros to get things work. Its highly recommended to use these macros instead
to do something by ourself. Using themacros is portable and such easier to maintain in the case a project should
be upgraded to a more recent PTXdist version.

This chapter describes the predefined macros in PTXdist and their usage.

Note: This list is not complete yet.

5.1.1 targetinfo

Usage:

$(call targetinfo)

Gives a feedback, what build stage is just started. Thats why it should always be the first call for each stage. For
the package foo and the compile stage it will output:

target: foo.compile

5.1.2 touch

Usage:

$(call touch)

Gives a feedback, what build stage is just finished. Thats why it should always be the last call for each stage. For
the package foo and the compile stage it will output:

finished target foo.compile

5.1.3 clean

Usage:

$(call clean, <directory path>)

Removes the given directory <directory path>.

41

5 PTXdist Reference

5.1.4 install_copy

Usage:

$(call install_copy, <package>, <UID>, <GID>, <permission>, <source> [, <destination>])

Installs given file or directory into:

• the project’s platform-i586/root/

• the project’s platform-i586/root-debug/

• an ipkg packet in the project’s platform-i586/packages/

Some of the parameters have fixed meanings:

<package> Name of the IPKG, the macro should work on

<UID> User ID (in a numerical value) the file should use in target’s root filesystem

<GID> Group ID (in a numerical value) the file should use in target’s root filesystem

<permission> Permission (in an octal value) the file should use in target’s root filesystem

The remaining parameters vary with the use case:

The <source> parameter can be:

• a directory path that should be created in target’s root filesystem. In this case the <destination> must be
omitted. The given path must always start with a / and means the root of target’s filesystem.

• an absolute path to a file that should be copied to target’s root filesystem. To avoid fixed pathes all pack-
ages are providing the <package>_DIR variable. So, this parameter in our foo example package can be a
$(FOO_DIR)/foo.

• a minus sign (-). PTXdist uses the <destination> parameter in this case to locate the file to copy from.
This only works if the package uses the default install stage. Only in this case an additional folder in
platform-i586/packages will be created for the package and its files. For our foo example package this
directory is platform-i586/packages/foo-1.1.0.

The <destination> parameter can be:

• omitted if a directory in target’s root filesystem should be created. For this case the directory to be created
is in the <source> parameter.

• an absolute path and filename with its root in target’s root filesysem. It must start with a slash (/). If also
the <source> parameter was given, the file can be renamed while copying.
If the <source> parameter was given as a minus sign (-) the <destination> is also used to locate the
source. For our foo example package if we give <destination> as /usr/bin/foo, PTXdist copies the file
platform-i586/packages/foo-1.1.0/usr/bin/foo

Due to the complexity of this macro, here are some usage examples:

Create a directory in the root filesystem:

$(call install_copy, foo, 0, 0, 0755, /home/user-foo)

Copy a file from the package build directory to the root filesystem:

$(call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/foo, /usr/bin/foo)

42

5 PTXdist Reference

Copy a file from the package build directory to the root filesystem and rename it:

$(call install_copy, foo, 0, 0, 0755, $(FOO_DIR)/foo, /usr/bin/bar)

Copy a file from the package install directory to the root filesystem:

$(call install_copy, foo, 0, 0, 0755, -, /usr/bin/foo)

5.1.5 install_alternative

Usage:

$(call install_alternative, <package>, <UID>, <GID>, <permission>, <destination>)

Installs given files or directories into:

• the project’s platform-i586/root/

• the project’s platform-i586/root-debug/

• an ipkg packet in the project’s platform-i586/packages/

The base parameters and their meanings:

<package> Name of the IPKG, the macro should work on

<UID> User ID (in a numerical value) the file should use in target’s root filesystem

<GID> Group ID (in a numerical value) the file should use in target’s root filesystem

<permission> Permission (in an octal value) the file should use in target’s root filesystem

The parameter <destination> is meant as an absolute path and filename in target’s root filesystem. PTXdist
searches for the source of this file in:

• the local project

• PTXdist’s install path

If the file exists in the local project it will be used for the target root filesystem. If the local project does not contain
this file, the generic file from the PTXdist installation directory will be used.

If our <destination> is /etc/foo.conf, PTXdist checks first, if ./projectroot/etc/foo.conf exists. Else it uses the
file <ptxdist install path>/generic/etc/foo.conf instead.

In a multiplatform project PTXdist checks first for the file ./projectroot/etc/foo.conf.<platform name>, and
then for ./projectroot/etc/foo.conf and falls back to the generic one if noone of these files exist.

5.1.6 install_link

Usage:

$(call install_link, <package>, <point to>, <where>)

Installs a symbolic link into:

• the project’s platform-i586/root/

43

5 PTXdist Reference

• the project’s platform-i586/root-debug/

• an ipkg packet in the project’s platform-i586/packages/

The parameters and their meanings:

<package> Name of the IPKG, the macro should work on

<point to> Path and name the link should point to. Note: This macro rejects absolute paths. If needed use
relative paths instead.

<where> Path and name of the symbolic link.

A few usage examples.

Create a symbolic link as /usr/lib/libfoo.so pointing to libfoo.so.1.1.0 in the same directory:

$(call install_link, foo, libfoo.so.1.1.0, /usr/lib/libfoo.so)

Create a symbolic link as /usr/bin/foo pointing to /bin/bar:

$(call install_link, foo, ../../bin/bar, /usr/bin/foo)

5.2 Rule file layout

Each rule file provides PTXdist with the required steps to be done on a per package base:

• get

• extract

• prepare

• compile

• install

• targetinstall

5.2.1 Default stage rules

As for most packages these steps can be done in a default way, PTXdist provides generic rules for each package.
If a package’s rule file does not provide a specific stage rule, the default stage rule will be used instead.

Omitting one of the stage rules does not mean that PTXdist skips this stage!
In this case the default stage rule is used instead.

get Stage Default Rule

If the get stage is omitted, PTXdist runs instead:

$(STATEDIR)/@package@.get:

@$(call targetinfo, $@)

@$(call touch, $@)

44

5 PTXdist Reference

Which means this step is skipped.

If the package is an archive that must be downloaded from the web, the following rule must exist in this case:

$(@package@_SOURCE):

@$(call targetinfo, $@)

@$(call get, @package@)

extract Stage Default Rule

If the extract stage is omitted, PTXdist runs instead:

$(STATEDIR)/@package@.extract:

@$(call targetinfo, $@)

@$(call clean, $(@package@_DIR))

@$(call extract, @package@)

@$(call patchin, @package@)

@$(call touch, $@)

prepare Stage Default Rule

If the prepare stage is omitted, PTXdist runs a default stage rule depending on some variable settings.

If the package’s rule file defines a @package@_AUTOCONFvariable (FOO_AUTOCONF for our foo example), PTXdist treats
this package as an autotoolized package and runs:

$(STATEDIR)/@package@.prepare:

@$(call targetinfo)

@$(call clean, $(@package@_DIR)/config.cache)

cd $(@package@_DIR)/$(@package@_SUBDIR) && \

$(@package@_PATH) $(@package@_ENV) \

./configure $(@package@_AUTOCONF)

@$(call touch)

If the package’s rule file defines a @package@_CMAKE variable (FOO_CMAKE for our foo example), PTXdist treats this
package as a cmake based package and runs:

$(STATEDIR)/@package@.prepare:

@$(call targetinfo)

@$(call clean, $(@package@_DIR)/config.cache)

cd $(@package@_DIR) && \

$(@package@_PATH) $(@package@_ENV) \

cmake $(@package@_CMAKE)

@$(call touch)

compile Stage Default Rule

If the compile stage is omitted, PTXdist runs instead:

$(STATEDIR)/@package@.compile:

@$(call targetinfo)

cd $(@package@_DIR) && \

45

5 PTXdist Reference

$(@package@_PATH) $(@package@_MAKE_ENV) \

$(MAKE) $(@package@_MAKE_OPT) $(@package@_MAKE_PAR)

@$(call touch)

Note: @package@_MAKE_PAR can be defined to YES or NO to control if the package can be built in parallel.

install Stage Default Rule

If the install stage is omitted, PTXdist runs instead:

$(STATEDIR)/@package@.install:

@$(call targetinfo)

cd $(@package@_DIR) && \

$(@package@_PATH) $(@package@_MAKE_ENV) \

$(MAKE) $(@package@_INSTALL_OPT)

@$(call touch)

Note: @package@_INSTALL_OPT is always defined to install if not otherwise specified. This value can be replaced
by a package’s rule file definition.

targetinstall Stage Default Rule

There is no default rule for a package’s targetinstall state. PTXdist has no idea what is required on the target at
runtime. This stage is up to the developer only. Refer to section 5.1 for further info on how to select files to be
included in the target’s root filesystem.

5.2.2 Skipping a Stage

For the case that a specific stage should be skipped, an empty rule must be provided:

$(STATEDIR)/@package@.<stage_to_skip>:

@$(call targetinfo)

@$(call touch)

Replace the <stage_to_skip> by get, extract, prepare, compile, install or targetinstall.

46

6 Various Aspects of Daily Work

6.1 Using an External Kernel Source Tree

This application note describes how to use an external kernel source tree within a PTXdist project. In this case
the external kernel source tree is managed by GIT.

6.1.1 Cloning the Linux Kernel Source Tree

In this example we are using the officiall Linux kernel developmen tree.

jbe@octopus:~$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6

[...]

jbe@octopus:~$ ls -l

[...]

drwxr-xr-x 38 jbe ptx 4096 2009-03-17 10:21 myprj

drwxr-xr-x 25 jbe ptx 4096 2009-03-17 10:42 linux-2.6

[...]

6.1.2 Configuring PTXdist

To make PTXdist use of this kernel source tree, we run

jbe@octopus:~$ ptxdist setup

and navigate to Source Directories, Prefix for kernel trees and enter the base path to the kernel source tree into
this menu entry (omit the kernel source tree directory name itself). The kernel source tree directory to be used in
this base path will be setup on a per project base. So it will be possible to place more than one kernel source tree
in the base path.

6.1.3 Configuring the PTXdist Project

Now we can setup this kernel source tree to be used in our project. PTXdist will handle it in the same way as a
kernel part of the project. Due to this, we must setup:

• Some kind of kernel version

• Kernel configuration

• Image type used on our target architecture

• If we want to build modules

• Patches to be used (or not)

47

6 Various Aspects of Daily Work

Let’s setup these topics. Assumption is here, the directory /�myprj contains a valid PTXdist project. We just add
the kernel component to it.

jbe@octopus:~$ cd myprj

jbe@octopus:~/myprj$ ptxdist platformconfig

We must enable the Linux kernel entry first, to enable kernel building as part of the project. After enabling this
entry, we must enter this entry, and:

• Setting up the kernel version with the name of kernel source tree directory. In our case shown above it
would be linux-2.6.

• Selecting the correct image type in the entry Image Type.

• Configuring the kernel within the menu entry patching & configuration.

– If no patches should be used on top of the selected kernel source tree, we keep the patch series file
entry empty. As GIT should help us to create these patches for deployment, it should be kept empty
on default in this first step.

– Select a name for the kernel configuration file and enter it into the kernel config file entry.

• As we want to use an existing kernel source tree we also must enable the Local kernel treemenu entry.

Now we can leave the menu and store the new setup. The only still missing component is a valid kernel config
file now. We can use one of the default config files the Linux kernel supports as a starting point. To do so, we
copy one to the location, where PTXdist expects it in the current project. In a multi platform project this location
is the platform directory usally in configs/<platform-directory>. Wemust store the file with a name selected in
the platform setup menu (kernel config file).

6.1.4 Work Flow

Now its up to ourself working on the GIT based kernel source tree and using PTXdist to include the kernel into
the root filesystem.

To configure the kernel source tree, we simply run:

jbe@octopus:~/myprj$ ptxdist kernelconfig

To build the kernel:

jbe@octopus:~/myprj$ ptxdist targetinstall kernel

To rebuild the kernel:

jbe@octopus:~/myprj$ ptxdist drop kernel targetinstall

jbe@octopus:~/myprj$ ptxdist targetinstall kernel

6.2 Discovering Runtime Dependencies

Often it happens an application on the target fails to run, because one of its dependencies is not fulfilled. This
section should give some hints how to discover this dependencies.

48

6 Various Aspects of Daily Work

6.2.1 Dependencies to Shared Libraries

Getting themissed shared library for example at runtime is something easily done: The dynamic linker prints the
missing library to the console.

To check at build time if all other dependencies are present is easy, too. The architecture specific readelf tool
can help us here. It comes with the OSELAS.Toolchain and is called via i586-unknown-linux-gnu-readelf (this
example uses the one coming with the i586-unknown-linux-gnu toolchain).

To test the foo binary from our new package FOO, we simply run:

$ i586-unknown-linux-gnu-readelf -d platform-i586/ root/usr/bin/foo | grep NEEDED

0x00000001 (NEEDED) Shared library: [libm.so.6]

0x00000001 (NEEDED) Shared library: [libz.so.1]

0x00000001 (NEEDED) Shared library: [libc.so.6]

We now can check if all of the listed libraries are present in the root filesystem. This works for shared libraries,
too. It is also a way to check if various configurations of our package are working as expected (e.g. disabling a
feature should also remove the required dependency of this feature).

6.2.2 Dependencies to other Resources

Sometimes a binary fails to run due to missing files, directories or device nodes. Often the error message (if any)
that the binary creates in this case is ambiguous. Here the strace tool can help us, namely to observe the binary
at runtime. strace shows all the system calls that the binary or its shared libraries are performing.

strace is one of the target debugging tools which PTXdist provides in its Debug Toolsmenu.

After adding strace to the root filesystem, we can use it and observe our foo binary:

$ strace usr/bin/foo

execve(”/usr/bin/foo”, [”/usr/bin/foo”], [/* 41 vars */]) = 0

brk(0) = 0x8e4b000

access(”/etc/ld.so.preload”, R_OK) = -1 ENOENT (No such file or directory)

open(”/etc/ld.so.cache”, O_RDONLY) = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=77488, ...}) = 0

mmap2(NULL, 77488, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f87000

close(3) = 0

open(”/lib//lib/libm-2.5.1.so”, O_RDONLY) = 3

read(3, ”\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0p%\0\000”..., 512) = 512

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7f86000

fstat64(3, {st_mode=S_IFREG|0555, st_size=48272, ...}) = 0

mmap2(NULL, 124824, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb7f67000

mmap2(0xb7f72000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0xb) = 0xb7f72000

mmap2(0xb7f73000, 75672, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7f73000

close(3) = 0

open(”/lib/libc.so.6”, O_RDONLY) = 3

read(3, ”\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\332X\1”..., 512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1405859, ...}) = 0

[...]

Occasionally the output of strace can be very long and the interesting parts are lost. So, if we assume the binary
tries to open a nonexisting file, we can limit the output to all open system calls:

49

6 Various Aspects of Daily Work

$ strace -e open usr/bin/foo

open(”/etc/ld.so.cache”, O_RDONLY) = 3

open(”/lib/libm-2.5.1.so”, O_RDONLY) = 3

open(”/lib/libz.so.1.2.3”, O_RDONLY) = 3

open(”/lib/libc.so.6”, O_RDONLY) = 3

[...]

open(”/etc/foo.conf”, O_RDONLY) = -1 ENOENT (No such file or directory)

The binary may fail due to a missing \texttt{/etc/foo.conf}. This could be a

hint on what is going wrong (it might not be the final solution).

\ptxsection{Dowloading Packages from the Web}

Sometimes it makes sense to get all required source archives at once. For example

prior to a shipment we want to also include all source archives, to free the user

from downloading it by him/herself.

Note: If \ptxdist{} is configured to share one source archive directory for all

projects, this setting should be switched off temporarily.

Then we enter the project directory and simply run:

\begin{ptxshell}[escapechar=|]{}

|\$| ptxdist get

PTXdist will now download all source archives used in the project and store them to the project local src/ direc-
tory.

6.3 Migration betweenMinor Releases

6.3.1 Simple Upgrade

To migrate an existing project from within one minor release of the second main release to the next one (e.g.
2.0.0 to 2.0.x), we do the following steps:

~/my_bsp# ptxdist --force migrate

6.4 Migration betweenMajor Releases

6.4.1 Basic Conversion

To migrate an existing PTXdist-1 project to the new PTXdist-2 the following steps are to be done:

To convert a PTXdist-1 project into a PTXdist-2 project simply copy your old ptxconfig file into the files
selected_ptxconfig and selected_platform.

After that, run

~/my_bsp# ptxdist --force platformconfig

50

6 Various Aspects of Daily Work

to configure the platform specific part and check if everything is set up correctly and save these settings. All in the
platform unused symbols will now be discarded and the remaining required symbols and their values are saved
to the selected_platform file.

Repeat the same step with

~/my_bsp# ptxdist --force menuconfig

In this case all for userland configuration unused symbols are discarded from the original ptxconfig file settings
and the remaining are saved to the selected_ptxconfig file. Check carefully if everything is set up correctly1

Now you have successfully separated platform and userland configuration. This is themain configuration ptxdist-
2 uses in a single platform project.

6.4.2 Adaption of Rules Files

A fewadaptions in the project local rules files are required, to alsomigrate them to the newPTXdist infrastructure.

Variables

The names of a few variables have changed.

• PTXCONF_HOST_PREFIXmust be replaced by PTXCONF_SYSROOT_HOST

• PTXCONF_ARCHmust be replaced by PTXCONF_ARCH_STRING

• IMAGEDIRmust be replaced by PKGDIR

Local Source Handling

To retain the old behaviour of ptxdist-1 in handling local sources simply keep the<packetname>_SOURCE vari-
able empty in the corresponding local source rule file.

6.4.3 PTXdist-1 Look and Feel

To keep the PTXdist-1 feeling use the following rules:

• Omit the platform name (e.g. keep this menu entry empty) when running pxtdist platformconfig

• Open the selected_platformconfig file with an editor and search for SYSROOT_TARGET, SYSROOT_HOST
and SYSROOT_CROSS. Replace their default settings with:

– For SYSROOT_TARGET: $PTXDIST_WORKSPACE/local/$PTXCONF_ARCH_STRING

– For SYSROOT_HOST: $PTXDIST_WORKSPACE/local-host

– For SYSROOT_CROSS: $PTXDIST_WORKSPACE/local-cross

With these settings you get the same directory structure in a ptxdist-2 project as in ptxdist-1.

1At least if you are using Busybox as your shell environment you must check carefully if all settings in the previous Busybox version are
still present. Each version of Busybox changes various used symbolnames, so it could happen that some settings are lost during the
transition.

51

6 Various Aspects of Daily Work

6.5 Software Installation and Upgrade

Root filesystems for Linux are usually built as a flash image and pushed into the respective root medium. How-
ever, when working with Embedded Linux systems, developers often have the need to

• install new packages

• remove packages

• update packages

• add configuration

Installation of new packagesmay for example happen if a developer works on a new piece of application code, or
if a new library is being written for the embedded system. Package updating may be a requirement even during
the system’s life cycle, for example for updating a customer application in the field.

Conventional Linux distributions like Debian, SuSE or Fedora use package systems like RPM or DEB to organize
their software packages. Unfortunately, these methods require huge packet databases in the root system, which
is bad for space constrained embedded systems. So what we need is a packet system that

• offers installation/removement of packages

• has no big database but a very low overhead

• allows packet management features like pre/post scripts (i.e. shutdown a web server, then upgrade it and
start it again)

ipkg is such a packet system and it is being used in ptxdist. Originally developed for the IBM Itsy, ipkg is mean-
while being used on all kinds of embedded Linux projects. The concept of ipkg archives is based on the well
known Debian packet management format: ipkg archives are “ar” archives, containing a tarball with the binary
files for the target box, plus management scripts which can be run on pre-install, post-install, pre-rm and post-
rm. So even if no ipkgmanagement utilities are available, developers canmodify the archives with standard shell
and console tools.

6.5.1 ipkg Usage in PTXdist

PTXdist end users and packet developers don’t have to care directly about ipkg. Packages are being created
during the targetinstall stage, then put into the platform-i586/packages/ directory. After the targetinstall stage
of a packet was done, this directory contains the ipkg packet itself plus, for most packages, a directory with the
file content.

The ipkg packets contain the binaries for the root filesystem as well as start/stop scripts and meta data about
the Unix filesystem permissions; when PTXdist creates the root filesystemwhich is later flashed into the onboard
flash of an embedded system, it takes the information from the ipkgpackets as the source, in order to make sure
that the image is consistent to what the packages contain.

Internally, PTXdist always uses ipkgpackets to store it’s target data. However, the ipkg functionality is not always
exposed to the target itself. So in order to use packets, navigate to Disk and File Utilities and enable ipkg. In the
ipkg submenu,make sure that the install /etc/ipkg.conf switch is active. This config file is necessary tomake ipkg
work at runtime system.

The ipkg tool can only be used in images created by ptxdist images. It’s not fully workingwithin
the platform-i586/root/ subdirectory used as NFS root filesystem.

52

6 Various Aspects of Daily Work

6.5.2 Packet Installation

A common use case for ipkg packets is to push new software to an already deployed target. There must be
a communication channel to transfer the packet itself to the embedded system, i.e. by using FTP or a secure
connection via SFTP or SSH, so it has to bemade sure that such a service is installed and configured on the target.
It is necessary that enough free space is available, in order to store the packet itself. A good rule of thumb is to
have twice the size of the installed package: while the packet is being installed, the archive as well as it’s contents
must fit into the system storage. This may be a problem on space constrained systems.

If the packet was transferred, it is necessary to have remote shell access to the box, either via telnet or, if security
is an issue, by using SSH. It is also possible to automate this process by using an intelligent update mechanism.
The shell is being used to start the necessary commands. If the packet was installed, the ipkg archive can be
removed again.

6.5.3 Automatic Packet Download

It is also possible to let the embedded system download ipkgpackets automatically from a network source, with-
out pushing the packets from the outside. In order to do so, a valid URLmust be written into the /etc/ipkg.conf
file. In this case one of the wget implementations in PTXdist must be selected, either the one in busybox (Shell &
Console Tools, BusyBox,Networking Utilities) or the native implementation (Networking Tools).

6.5.4 The ipkg Command

The following sections describe the ipkg features.

What’s Installed on the System?

To get a list of installed packages, use list_installed:

ipkg list_installed

busybox - 1.1.3 -

figlet - 222 -

gcclibs - 4.1.1 -

gdbserver - 6.4 -

glib - 2.8.6 -

glibc - 2.5 -

ipkg - 0.99.163 -

ixp-firmware - 1 -

kernel-modules - 2.6.18 -

libxml2 - 2.6.27 -

mc - 4.6.1 -

memedit - 0.7 -

ncurses - 5.5 -

pciutils - 2.2.1 -

pureftpd - 1.0.21 -

readline - 5.0 -

rootfs - 1.0.0 -

strace - 4.5.14-20061101 -

udev - 088 -

zlib - 1.2.3 -

Successfully terminated.

53

6 Various Aspects of Daily Work

Content of a Package

To see what files are in an installed package, use files:

ipkg files udev

Package udev (106) is installed on root and has the following files:

/etc/init.d/udev

/sbin/udevtrigger

/etc/udev/udev.conf

/etc/rc.d/S00_udev

/sbin/udevd

/sbin/udevsettle

Successfully terminated.

Adding a Package

Adding a new packet or replacing an already installed one is done by

ipkg install <package-name>.ipk

Note the trailing .ipk. This extensionmust be given if the package file is already part of the filesystem. Otherwise
ipkg tries to download it from the URL configured in /etc/ipkg.conf.

Removing a Package

To remove the contents of a package from the running system, ensure that nothing from the package is currently
in use. Find out the precise packet name with

ipkg list

and remove it’s contents from the runtime system with

ipkg remove <package-name>

Upgrading a Package

To upgrade a package, first remove it’s current contents from the runtime system. In a second step, install the
contents of the new ipkg package.

ipkg list

ipkg remove <package-name>

ipkg <package-name>[.ipk]

54

7 Getting help

Below is a list of locations where you can get help in case of trouble. For questions how to do something special
with PTXdist or general questions about Linux in the embedded world, try these.

7.1 Mailing Lists

7.1.1 About PTXdist in Particular

This is an English language public mailing list for questions about PTXdist. See

http://www.pengutronix.de/mailinglists/index_en.html

how to subscribe to this list. If you want to search through the mailing list archive, visit

http://www.mail-archive.com/

and search for the list ptxdist. Please note again that this mailing list is just related to the PTXdist as a software.
For questions regarding your specific BSP, see the following items.

7.1.2 About Embedded Linux in General

This is a German language public mailing list for general questions about Linux in embedded environments. See

http://www.pengutronix.de/mailinglists/index_de.html

how to subscribe to this list. Note: You can also send mails in English.

7.2 News Groups

7.2.1 About Linux in Embedded Environments

This is an English newsgroup for general questions about Linux in embedded environments.

comp.os.linux.embedded

7.2.2 About General Unix/Linux Questions

This is a German newsgroup for general questions about Unix/Linux programming.

de.comp.os.unix.programming

55

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html

7 Getting help

7.3 Chat/IRC

About PTXdist in particular

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chatroom #ptxdist. This is an English
room to answer questions about PTXdist. Best time to meet somebody there is at European daytime.

7.4 Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site. Ask our
sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Peiner Str. 6-8

31137 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 55 55

or by electronic mail:

sales@pengutronix.de

56

mailto:sales@pengutronix.de

	Welcome to the Embedded World
	First Steps in the Embedded World
	From Server to Embedded
	Linux = Embedded Linux

	Getting a working Environment
	Download Software Components
	PTXdist Installation
	Main Parts of PTXdist
	Extracting the Sources
	Prerequisites
	Configuring PTXdist

	Toolchains
	Using Existing Toolchains
	Building a Toolchain
	Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Generic-2010.01.0
	Protecting the Toolchain
	Building Additional Toolchains

	PTXdist User's Manual
	How does it work?
	PTXdist's perception of the world
	PTXdist's build process

	First steps with PTXdist
	Extracting the Board Support Package
	Selecting a Userland Configuration
	Selecting a Hardware Platform
	Selecting a Toolchain
	Building the Root Filesystem Content
	What we Got Now
	Creating a Root Filesystem Image
	Running all Parts in an emulated Environment (QEMU)

	Adapting the OSELAS.BSP-Pengutronix-Generic-2010.01.0 Project
	Working with Kconfig
	Adapting Platform Settings
	Adapting Linux Kernel Settings
	Adapting Userland Settings

	PTXdist Developer's Manual
	PTXdist's directory hierarchy
	Rule Files
	Patch Series
	Runtime Configuration

	Adding new Packages
	Rule File Creation
	Make it Work
	Advanced Rule Files
	Patching Packages
	Creating Patches for a Package
	Modifying Autotoolized Packages

	PTXdist Reference
	Rule File Macro Reference
	targetinfo
	touch
	clean
	install_copy
	install_alternative
	install_link

	Rule file layout
	Default stage rules
	Skipping a Stage

	Various Aspects of Daily Work
	Using an External Kernel Source Tree
	Cloning the Linux Kernel Source Tree
	Configuring PTXdist
	Configuring the PTXdist Project
	Work Flow

	Discovering Runtime Dependencies
	Dependencies to Shared Libraries
	Dependencies to other Resources

	Migration between Minor Releases
	Simple Upgrade

	Migration between Major Releases
	Basic Conversion
	Adaption of Rules Files
	PTXdist-1 Look and Feel

	Software Installation and Upgrade
	ipkg Usage in PTXdist
	Packet Installation
	Automatic Packet Download
	The ipkg Command

	Getting help
	Mailing Lists
	About PTXdist in Particular
	About Embedded Linux in General

	News Groups
	About Linux in Embedded Environments
	About General Unix/Linux Questions

	Chat/IRC
	Commercial Support

