
OSELAS.Support
OSELAS.Training
OSELAS.Development
OSELAS.Services

Quickstart Manual
OSELAS.BSP()

FriendlyARMMini2440

Pengutronix e. K.
Peiner Straße 6–8
31137 Hildesheim

+49 (0)51 21 / 20 69 17 – 0 (Fon)
+49 (0)51 21 / 20 69 17 – 55 55 (Fax)

info@pengutronix.de

© 2015 Pengutronix, Hildesheim – GIT Rev. 837e450

Contents

I OSELAS Quickstart for
FriendlyARMMini2440 6

1 You have been warned 7

2 First steps with PTXdist 8

3 Getting a working Environment 10
3.1 Download Software Components . 10
3.2 PTXdist Installation . 10

3.2.1 Main Parts of PTXdist . 10
3.2.2 Extracting the Sources . 11
3.2.3 Prerequisites . 12
3.2.4 Configuring PTXdist . 13

3.3 Toolchains . 14
3.3.1 Using existing Toolchains from different Vendors . 15
3.3.2 Omitting building a Toolchain . 15
3.3.3 Building a Toolchain . 17
3.3.4 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2015.01.0 17
3.3.5 Protecting the Toolchain . 18
3.3.6 Building additional Toolchains . 18

4 Building a root filesystem for the Mini2440 20
4.1 Getting the Board Support Package . 20
4.2 Feature Dependend Configurations . 21

4.2.1 Identify Your Mini2440 . 21
4.2.2 Network Adaptions . 22
4.2.3 Feature Adaptions . 23

4.3 Selecting a Userland Configuration . 24
4.4 Selecting a Hardware Platform . 24
4.5 Selecting a Toolchain . 25
4.6 Building the Root Filesystem . 25
4.7 Building an Image . 25

5 Bring in the Bootloader Barebox 27

6 How to Boot the Mini2440 31
6.1 NOR Type Flash Memory . 31
6.2 NAND Type Flash Memory . 31
6.3 SD/MMC Card Memory . 32
6.4 Network Memory . 34
6.5 Adaptions . 35

3

Contents

7 Updating the Mini2440 36
7.1 NOR flash memory case . 36
7.2 NAND flash memory case . 36

7.2.1 Updating the Bootloader . 36
7.2.2 Updating the Persistent Environment . 37
7.2.3 Updating the Linux Kernel . 37
7.2.4 Updating the Root Filesystem . 38

7.3 SD/MMC card memory case . 38
7.3.1 Updating the Linux Kernel . 38
7.3.2 Updating the Root Filesystem . 38

7.4 Network memory case . 38

8 Special Notes 39
8.1 Available Kernel Releases . 39
8.2 Available Userland Configuration . 41

8.2.1 Some details about the configs/ptxconfig.qt . 41
8.3 Framebuffer . 42
8.4 GPIO . 42

8.4.1 GPIO Usage Example . 42
8.5 I²C Master . 43

8.5.1 I²C Device AT24c08 . 43
8.6 LEDs . 43
8.7 MMC/SD Card . 44
8.8 Network . 44
8.9 SPI Master . 45
8.10 Touchscreen . 45

8.10.1 If the Touchscreen does not work . 46
8.10.2 If the Touchscreen does not work as expected . 46

8.11 LCD Backlight . 47
8.12 USB Host Controller Unit . 47
8.13 Watchdog . 48
8.14 ADC . 48
8.15 Keypad . 48
8.16 Audio . 49
8.17 USB Device . 49
8.18 Buzzer . 50
8.19 Get the latest BSP Release for the Mini2440 . 50
8.20 Be Part of the Mini2440 BSP Development . 50
8.21 Notes About the Bootloader Barebox . 50

8.21.1 Run-Time Environment . 51
8.21.2 How does the Partitioning Work in Barebox . 52

8.22 NFS with PTXdist and Barebox . 54
8.22.1 Classic NFS daemon . 55
8.22.2 Troubleshooting . 57
8.22.3 Usermode NFS daemon . 57

8.23 Using a Foreign Toolchain . 58
8.23.1 Discovering Toolchain’s Compiler Defaults . 59
8.23.2 Discovering Toolchain’s Library Optimization . 60
8.23.3 BSP changes to use a foreign Toolchain . 61

8.24 Using automagically the correct PTXdist Revision . 61

4

Contents

8.25 Using time zone support on the Mini2440 . 63
8.26 HowTo customise your root filesystem and update PTXdist with it 65
8.27 Updating to a new PTXdist version . 67
8.28 Thanks from the Author . 67

9 Document Revisions 68

10 Getting help 69
10.1 Mailing Lists . 69

10.1.1 About PTXdist in Particular . 69
10.1.2 About Embedded Linux in General . 69

10.2 About Working on the Linux Kernel . 69
10.3 Chat/IRC . 69
10.4 FriendlyARMMini2440 specific Mailing List . 70
10.5 Commercial Support . 70

5

Part I

OSELAS Quickstart for
FriendlyARMMini2440

6

1 You have been warned

The Barebox bootloader and the Linux kernel contained in this board support package will modify your NAND
memory. This is important to know if you want to keep a way back to the previous usage. At least the bad block
marker maybe lost if you try to switch back to the old behaviour.

If you already used another recent kernel on your Mini2440, you can ignore this warning.

A word about using NANDmemory for the bootloader and the filesystem:

NANDmemory can be forgetful. That is why some kind of redundancy information is always required. This board
support package uses ECC (error-correcting code) checksums as redundancy information when the bootloader
and the Linux kernel are up and running.

This kind of redundancy information can repair one bit errors and detect two bit errors in a page of data. Its
very important to use ECC at least for the bootloader to ensure to bring up the Mini2440 successfully. But its
currently not done in the bootloader while bootstrapping. So, there is still a risk for long term use to fail booting
the Mini2440 from NAND. In this case the bootloader must be re-written making the Mini2440 booting again
from NAND.

In oneof the next releases, ECC check and correctionwill be donewhile bootstrapping aswell, tomake the system
more reliable for long term use. But then one question will be still open: Does the hardware of the S3C2440 CPU
ECC check and correction for the very first page? I guess no, because the hardware has no idea, where the ECC
checksum is stored. So, maybe there is no 100 % reliable solution for long term users.

7

2 First steps with PTXdist

In the next sections you will work with PTXdist to get everything you need to get your Mini2440 up and working.
To give you a quick idea what PTXdist is, you should read this section.

PTXdist works as a console command tool. Everything we want PTXdist to do, we have to enter as a command.
But it’s always the same base command:

$ ptxdist <parameter>

To run different functions, this commandmust be extended by parameters to define the function wewant to run.

If we are unsure what parameter must be given to obtain a special function, we run it with the parameter help.

$ ptxdist help

This will output all possible parameters and subcommands and their meaning.

Since the list we see is very long, let’s explain the major parameters usually needed for daily usage:

menu This starts a dialog based frontend for thosewho do not like typing commands. It will gain us access to the
most common parameters to configure and build a PTXdist project. Note: it needs ’dialog’ to be installed
to make is work. It will fail if this tool is not installed on your host. menuconfig can be used instead in this
case.

menuconfig Starts the Kconfig based project configurator for the current selected userland configuration. This
menu will give us access to various userland components the root filesystem of our target should consist
of.

platformconfig Starts the Kconfig based platform configurator. This menu lets us set up all target specific set-
tings. Major parts are:

• Toolchain (architecture and revision)

• boot loader

• root filesystem image type

• Linux kernel (revision)

Note: A PTXdist project can consist of more than one platform configuration at the same time.

kernelconfig Runs the standard Linux kernel Kconfig to configure the kernel for the current selected platform.
To run this feature, the kernel must be already set up for this platform.

menuconfig barebox Runs the standard Barebox’s Kconfig to configure the bootloader. To run this feature,
Barebox must be already set up for this platform.

toolchain Sets up the path to the toolchain used to compile the current selected platform. Without an additional
parameter, PTXdist tries to guess the toolchain from platform settings. To be successful, PTXdist depends
on the OSELAS.Toolchains installed to the /opt directory.
If PTXdist wasn’t able to autodetect the toolchain, an additional parameter can be given to provide the
path to the compiler, assembler, linker and so on.

8

2 First steps with PTXdist

select Used to select the current userland configuration, which is only required if there is no selected_ptxconfig
in the project’s main directory. This parameter needs the path to a valid ptxconfig. It will generate a soft
link called selected_ptxconfig in the project’s main directory.

platform Used to select the current platform configuration, which is only required if there is no se-

lected_platformconfig in the project’s main directory. This parameter needs the path to a valid
platformconfig. It will generate a soft link called selected_platformconfig in the project’s main di-
rectory.

go The mostly used command. This will start to build everything to get all the project defined software parts.
Also used to rebuild a part after its configuration was changed.

images Used at the end of a build to create an image from all userland packages to deploy the target (its flash
for example or its hard disk).

setup Mostly run once per PTXdist revision to set up global paths and the PTXdist behavior.

All these commands depending on various files a PTXdist based project provides. So, running the commands
make only sense in directories that contain a PTXdist based project. Otherwise, PTXdist gets confused and then
it tries to confuse the user with funny error messages.

9

3 Getting a working Environment

3.1 Download Software Components

In order to follow this manual, some software archives are needed. There are several possibilities how to get
these: either as part of an evaluation board package or by downloading them from the Pengutronix web site.

The central place for OSELAS related documentation is http://www.oselas.com and http://www.ptxdist.de.
These websites provide all required packages and documentation (at least for software components which are
available to the public).

In order to build OSELAS.BSP-Pengutronix-Mini2440-2015.01.0, the following source archives have to be avail-
able on the development host:

• ptxdist-2015.01.0.tar.bz2

• ptxdist-2014.12.0.tar.bz2

• OSELAS.Toolchain-2014.12.0.tar.bz2

If they are not available on the development system yet, it is necessary to get them.

The PTXdist- 2014.12.0 is only required to build the toolchain, while PTXdist- 2015.01.0 is re-
quired to build the BSP. All PTXdist revisions can co-exist.

3.2 PTXdist Installation

The PTXdist build system can be used to create a root filesystem for embedded Linux devices. In order to start
development with PTXdist it is necessary to install the software on the development system.

This chapter provides information about how to install and configure PTXdist on the development host.

3.2.1 Main Parts of PTXdist

The most important software component which is necessary to build an OSELAS.BSP() board support package
is the ptxdist tool. So before starting any work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

The ptxdist Program: ptxdist is installed on the development host during the installation process. ptxdist is
called to trigger any action, like building a software packet, cleaning up the tree etc. Usually the ptxdist
program is used in a workspace directory, which contains all project relevant files.

10

http://www.oselas.com
http://www.ptxdist.de

3 Getting a working Environment

A Configuration System: The config system is used to customize a configuration, which contains information
about which packages have to be built and which options are selected.

Patches: Due to the fact that some upstream packages are not bug free – especially with regard to cross compi-
lation – it is often necessary to patch the original software. PTXdist contains amechanism to automatically
apply patches to packages. The patches are bundled into a separate archive. Nevertheless, they are nec-
essary to build a working system.

Package Descriptions: For each software component there is a “recipe” file, specifying which actions have to be
done to prepare and compile the software. Additionally, packages contain their configuration sniplet for
the config system.

Toolchains: PTXdist does not come with a pre-built binary toolchain. Nevertheless, PTXdist itself is able to
build toolchains, which are provided by the OSELAS.Toolchain() project. More in-deep information about
the OSELAS.Toolchain() project can be found here: http://www.pengutronix.de/oselas/toolchain/
index_en.html

Board Support Package This is an optional component, mostly shipped aside with a piece of hardware. There
are various BSP available, some are generic, some are intended for a specific hardware.

3.2.2 Extracting the Sources

Do the following steps at best in your own home directory ($HOME). You need root permissions
only in the make install step, and nowhere else.

To install PTXdist, the archive Pengutronix provides has to be extracted:

ptxdist-2015.01.0.tar.bz2 The PTXdist software itself

The PTXdist archive has to be extracted into some temporary directory in order to be built before the installation,
for example the local/ directory in the user’s home. If this directory does not exist, we have to create it and
change into it:

$ cd

$ mkdir local

$ cd local

Next step is to extract the archive:

$ tar -xjf ptxdist-2015.01.0.tar.bz2

If everything goes well, we now have a PTXdist-2015.01.0 directory, so we can change into it:

$ cd ptxdist-2015.01.0

$ ls -lF

total 530

-rw-r--r-- 1 jb user 18446 Sep 9 15:59 COPYING

-rw-r--r-- 1 jb user 4048 Sep 9 15:59 CREDITS

-rw-r--r-- 1 jb user 115540 Sep 9 15:59 ChangeLog

-rw-r--r-- 1 jb user 57 Sep 9 15:59 INSTALL

-rw-r--r-- 1 jb user 3868 Sep 9 15:59 Makefile.in

-rw-r--r-- 1 jb user 4268 Sep 9 15:59 README

11

http://www.pengutronix.de/oselas/toolchain/index_en.html
http://www.pengutronix.de/oselas/toolchain/index_en.html

3 Getting a working Environment

-rw-r--r-- 1 jb user 2324 Sep 9 15:59 README.devel

-rw-r--r-- 1 jb user 63516 Sep 9 15:59 TODO

-rwxr-xr-x 1 jb user 28 Sep 9 15:59 autogen.sh

drwxr-xr-x 2 jb user 72 Sep 9 15:59 bin

drwxr-xr-x 12 jb user 352 Sep 9 15:59 config

-rwxr-xr-x 1 jb user 224087 Sep 9 17:34 configure

-rw-r--r-- 1 jb user 12196 Sep 9 15:59 configure.ac

drwxr-xr-x 10 jb user 248 Sep 9 15:59 generic

drwxr-xr-x 242 jb user 8168 Sep 9 15:59 patches

drwxr-xr-x 2 jb user 1624 Sep 9 15:59 platforms

drwxr-xr-x 4 jb user 112 Sep 9 15:59 plugins

lrwxrwxrwx 1 jb user 7 Oct 4 20:42 projectroot -> generic

drwxr-xr-x 6 jb user 60664 Sep 9 15:59 rules

drwxr-xr-x 9 jb user 936 Sep 9 15:59 scripts

drwxr-xr-x 2 jb user 512 Sep 9 15:59 tests

3.2.3 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed on the development
host. The configure script will stop if it discovers that something is missing.

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to configure the packet:

$./configure

This will check your system for required components PTXdist relies on. If all required components are found the
output ends with:

[...]

checking whether python development files are present... yes

checking for patch... /usr/bin/patch

checking whether /usr/bin/patch will work... yes

configure: creating ./config.status

config.status: creating Makefile

ptxdist version 2015.01.0 configured.

Using ’/usr/local’ for installation prefix.

Report bugs to ptxdist@pengutronix.de

Without further arguments PTXdist is configured to be installed into /usr/local, which is the standard location
for user installed programs. To change the installation path to anything non-standard, we use the --prefix

argument to the configure script. The --help option offers more information about what else can be changed
for the installation process.

The installation paths are configured in a way that several PTXdist versions can be installed in parallel. So if an
old version of PTXdist is already installed there is no need to remove it.

One of the most important tasks for the configure script is to find out if all the programs PTXdist depends on are
already present on the development host. The scriptwill stopwith an errormessage in case something ismissing.
If this happens, themissing tools have to be installed from the distribution befor re-running the configure script.

When the configure script is finished successfully, we can now run

12

3 Getting a working Environment

$ make

All program parts are being compiled, and if there are no errors we can now install PTXdist into it’s final location.
In order to write to /usr/local, this step has to be performed as user root:

$ sudo make install

[enter password]

[...]

If we don’t have root access to the machine it is also possible to install PTXdist into some other directory with
the --prefix option. We need to take care that the bin/ directory below the new installation dir is added to our
$PATH environment variable (for example by exporting it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed:

$ cd ../../

$ rm -fr local

3.2.4 Configuring PTXdist

When using PTXdist for the first time, some setup properties have to be configured. Two settings are the most
important ones: where to store the source archives and if a proxy must be used to gain access to the world wide
web.

Run PTXdist’s setup:

$ ptxdist setup

Due to the fact that PTXdist is working with sources only, it needs various source archives from the world wide
web. If these archives are not present on our host, PTXdist starts the wget command to download them on de-
mand.

Proxy Setup

To do so, an internet access is required. If this access is managed by a proxy wget command must be advised to
use it. PTXdist can be configured to advise the wget command automatically: navigate to entry Proxies and enter
the required addresses and ports to access the proxy in the form:

<protocol>://<address>:<port>

Source Archive Location

Whenever PTXdist downloads source archives it stores these archives in a project localmanner. This is the default
behaviour. If we are working with more than one PTXdist based project, every project would download its own
required archives in this case. To share all source archives between all projects, PTXdist can be configured to
share only one archive directory for all projects it handles: navigate to menu entry Source Directory and enter the
path to the directory where PTXdist should store archives to share between its projects.

13

3 Getting a working Environment

Generic Project Location

If we already installed the generic projects we should also configure PTXdist to know this location. If we already
did so, we can use the command ptxdist projects to get a list of available projects and ptxdist clone to get a
local working copy of a shared generic project.

Navigate to menu entry Project Searchpath and enter the path to projects that can be used in such a way. Here
we can configure more than one path, each part can be delemited by a colon. For example for PTXdist’s generic
projects and our own previous projects like this:

/usr/local/lib/ptxdist-2015.01.0/projects:/office/my_projects/ptxdist

Leave the menu and store the configuration. PTXdist is now ready for use.

In order to build the toolchain in the next step, the specific PTXdist- 2014.12.0 is required. We
must repeat the previous steps with the PTXdist- 2014.12.0 to install it on our host as well. All
PTXdist revisions can co-exist.

3.3 Toolchains

Before we can start building our first userland we need a cross toolchain. On Linux, toolchains are nomonolithic
beasts. Most parts of what we need to cross compile code for the embedded target comes from theGNUCompiler
Collection, gcc. The gcc packet includes the compiler frontend, gcc, plus several backend tools (cc1, g++, ld etc.)
which actually perform the different stages of the compile process. gcc does not contain the assembler, so we
also need the GNU Binutils packagewhich provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a prefix – the GNU target.
For example, the cross compilers for ARM and powerpc may look like

• arm-softfloat-linux-gnu-gcc

• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for specific machines. So for
example if a C program is to be compiled natively, it works like this:

$ gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler instead of the native one:

$ arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the ”toolchain” is the runtime library (libc, dynamic linker). All programs
running on the embedded system are linked against the libc, which also offers the interface from user space
functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler, which is used to build
normal user space code, is being built against the libc itself. For example, if the target does not contain a hardware
floating point unit, but the toolchain generates floating point code, it will fail. This is also the case when the
toolchain builds code for i686 CPUs, whereas the target is i586.

So in order to make things working consistently it is necessary that the runtime libc is identical with the libc the
compiler was built against.

14

3 Getting a working Environment

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution but a development
tool. But it can be used to build a toolchain for our target. Building the toolchain usually has only to be done
once. It may be a good idea to do that over night, because it may take several hours, depending on the target
architecture and development host power.

3.3.1 Using existing Toolchains from different Vendors

If a toolchain fromadifferent vendor thanOSELAS is already installedwhich is known tobeworking, the toolchain
building step with PTXdist may be omitted.

The OSELAS.BoardSupport() Packages shipped for PTXdist have been tested with the OSE-
LAS.Toolchains() built with the same PTXdist version. So if an external toolchain is being used
which isn’t known to be stable, a target may fail. Note that not all compiler versions and combi-
nations work properly in a cross environment.

Every OSELAS.BoardSupport() Package checks for its OSELAS.Toolchain it’s tested against, so using a toolchain
from a different vendor than OSELAS requires an additional step:

Open the OSELAS.BoardSupport() Package menu with:

$ ptxdist platformconfig

and navigate to architecture ---> toolchain and check for specific toolchain vendor. Clear this entry to
disable the toolchain vendor check.

Preconditions a toolchain from a different vendor than OSELAS must meet:

• it shall be built with the configure option --with-sysroot pointing to its own C libraries.

• it should not support the multilib feature as this may confuse PTXdist which libraries are to select for the
root filesystem

If we want to check if our toolchain was built with the --with-sysroot option, we just run this simple command:

$ mytoolchain-gcc -v 2>&1 grep with-sysroot

If this command does not output anything, this toolchain was not built with the --with-sysroot option and
cannot be used with PTXdist.

3.3.2 Omitting building a Toolchain

Pengutronix also provides ’ready to use’ toolchains in a binary manner. These toolchains are built from the OS-
ELAS.Toolchain bundle, so they comply with all of Pengutronix’s board support packages and we can use them
instead of building our own one.

The binaryOSELAS toolchains are provided asDebian Distribution Packages. Alsomost non-Debian distributions
can handle such packages.

In order to install the OSELAS binary toolchains on a Debian based system the following steps are required:

15

3 Getting a working Environment

Add the OSELAS Server as a Package Source

To register the OSELAS package server to the list of known package servers, we add a new file with the name
pengutronix.list into the directory /etc/apt/sources.list.d/. The basename of this file isn’t important, while
the extension .list is.

The contents of this new file describe the Pengutronix server as an available package source. It is defined via one
text line:

deb http://debian.pengutronix.de/debian/ sid main contrib non-free

Note: if the directory /etc/apt/sources.list.d/does not exist, the text line mentioned abovemust be added to
the file /etc/apt/sources.list instead.

Make the OSELAS Server Content available

The package manager nowmust update its packages list with the following command:

$ apt-get update

Install the Archive Keyring

To avoidwarnings about untrusted package sources we can install theOSELAS archive keyringwith the following
command:

$ apt-get install pengutronix-archive-keyring

Install the binary OSELAS Toolchain

Now everything is in place to install the binary OSELAS toolchain for the OSELAS.BSP-Pengutronix-Mini2440-
2015.01.0 board support package:

$ apt-get install oselas.toolchain-2014.12.0-arm-v4t-linux-gnueabi-gcc-4.9.2-glibc-2.20-binutils-2.24-
kernel-3.16-sanitized

These package names are very long and hard to type without making typos. An easier way is to ask the package
manager for available toolchains and just use the name by copy and paste it.

$ apt-cache search ”oselas.toolchain-.*-arm.*v4t.*”

oselas.toolchain-2014.12.0-arm-v4t-linux-gnueabi-gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized

The binary OSELAS Toolchain Package for non-Debian Distributions

The Debian Distribution Packages can be found on our server at http://debian.pengutronix.de/debian/
pool/main/o/

The OSELAS.BSP-Pengutronix-Mini2440-2015.01.0 related OSELAS toolchain package can be found here:

Subpath is:
oselas.toolchain-2014.12.0-arm-v4t-linux-gnueabi-gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-

sanitized/

16

http://debian.pengutronix.de/debian/pool/main/o/
http://debian.pengutronix.de/debian/pool/main/o/

3 Getting a working Environment

Package filename is:
oselas.toolchain-2014.12.0-arm-v4t-linux-gnueabi-gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-

sanitized*.deb.

Package filenames for 32 bit host machines are ending on *_i386.deb and for 64 bit host machines on
*_amd64.deb.

3.3.3 Building a Toolchain

PTXdist handles toolchain building as a simple project, like all other projects, too. So we can download the
OSELAS.Toolchain bundle and build the required toolchain for the OSELAS.BoardSupport() Package.

Building any toolchain of the OSELAS.Toolchain-2014.12.0 is tested with PTXdist-2014.12.0.
Pengutronix recommends to use this specific PTXdist to build the toolchain. So, it might be
essential to install more than one PTXdist revision to build the toolchain and later on the Board
Support Package if the latter one is made for a different PTXdist revision.

A PTXdist project generally allows to build into some project defined directory; all OSELAS.Toolchain projects
that come with PTXdist are configured to use the standard installation paths mentioned below.

All OSELAS.Toolchain projects install their result into /opt/OSELAS.Toolchain-2014.12.0/.

Usually the /opt directory is not world writeable. So in order to build our OSELAS.Toolchain
into that directory we need to use a root account to change the permissions. PTXdist detects
this case and asks if we want to run sudo to do the job for us. Alternatively we can enter:
mkdir /opt/OSELAS.Toolchain-2014.12.0

chown <username> /opt/OSELAS.Toolchain-2014.12.0

chmod a+rwx /opt/OSELAS.Toolchain-2014.12.0.

We recommend to keep this installation path as PTXdist expects the toolchains at /opt. Wheneverwe go to select
a platform in a project, PTXdist tries to find the right toolchain from data read from the platform configuration
settings and a toolchain at /opt that matches to these settings. But that’s for our convenience only. If we decide
to install the toolchains at a different location, we still can use the toolchain parameter to define the toolchain to
be used on a per project base.

3.3.4 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2015.01.0

Do the following steps in your own home directory ($HOME). The final OSELAS.Toolchain gets
installed to opt/, but must never be compiled in the opt/ directory. You will get many funny
error messages, if you try to compile the OSELAS-Toolchain in opt/.

To compile and install an OSELAS.Toolchain we have to extract the OSELAS.Toolchain archive, change into the
new folder, configure the compiler in question and start the build.

The required compiler to build the OSELAS.BSP-Pengutronix-Mini2440-2015.01.0 board support package is

arm-v4t-linux-gnueabi_gcc-4.9.2_glibc-2.20_binutils-2.24_kernel-3.16-sanitized

17

3 Getting a working Environment

So the steps to build this toolchain are:

In order to build any of the OSELAS.Toolchains, the host must provide the tool fakeroot. Other-
wise the message bash: fakeroot: command not foundwill occur and the build stops.

Please ensure the ’current directory’ (the . entry) is not part of your PATH environment variable.
PTXdist tries to sort out this entry, but might not be successful in doing so. Check by running
ptxdist print PATH if the output still contains any kind of ’current directory’ as a component.
If yes, remove it first.

$ tar xf OSELAS.Toolchain-2014.12.0.tar.bz2

$ cd OSELAS.Toolchain-2014.12.0

$ ptxdist select ptxconfigs/↵
arm-v4t-linux-gnueabi_gcc-4.9.2_glibc-2.20_binutils-2.24_kernel-3.16-sanitized.ptxconfig

$ ptxdist go

At this stage we have to go to our boss and tell him that it’s probably time to go home for the day. Even on
reasonably fast machines the time to build an OSELAS.Toolchain is something like around 30 minutes up to a
few hours.

Measured times on different machines:

• Single Pentium 2.5 GHz, 2 GiB RAM: about 2 hours

• Turion ML-34, 2 GiB RAM: about 1 hour 30 minutes

• Dual Athlon 2.1 GHz, 2 GiB RAM: about 1 hour 20 minutes

• Dual Quad-Core-Pentium 1.8 GHz, 8 GiB RAM: about 25 minutes

• 24 Xeon cores 2.54 GHz, 96 GiB RAM: about 22 minutes

Another possibility is to read the next chapters of this manual, to find out how to start a new project.

When the OSELAS.Toolchain project build is finished, PTXdist is ready for prime time and we can continue with
our first project.

3.3.5 Protecting the Toolchain

All toolchain components are built with regular user permissions. In order to avoid accidential changes in the
toolchain, the files should be set to read-only permissions after the installation has finished successfully. It is also
possible to set the file ownership to root. This is an important step for reliability, so it is highly recommended.

3.3.6 Building additional Toolchains

TheOSELAS.Toolchain-2014.12.0bundle comeswith variouspredefined toolchains. Refer theptxconfigs/ folder
for other definitions. To build additional toolchainsweonly have to clean our current toolchain project, removing
the current selected_ptxconfig link and creating a new one.

18

3 Getting a working Environment

$ ptxdist clean

$ rm selected_ptxconfig

$ ptxdist select ptxconfigs/any_other_toolchain_def.ptxconfig

$ ptxdist go

All toolchains will be installed side by side architecture dependent into directory

/opt/OSELAS.Toolchain-2014.12.0/architecture_part.

Different toolchains for the same architecture will be installed side by side version dependent into directory

/opt/OSELAS.Toolchain-2014.12.0/architecture_part/version_part.

19

4 Building a root filesystem for the Mini2440

Earlier releases came in a simple TAR archive. Since the year 2015 release, Pengutronix provides
this Board Support Package via its GIT repository only.

4.1 Getting the Board Support Package

In order to work with a PTXdist based project we have to checkout the Board Support Package content first:

$ git clone http://git-public.pengutronix.de/git-public/OSELAS.BSP-Pengutronix-Mini2440.git

Cloning into ’OSELAS.BSP-Pengutronix-Mini2440’...

remote: Counting objects: 1121, done.

remote: Compressing objects: 100% (910/910), done.

remote: Total 1121 (delta 517), reused 405 (delta 174)

Receiving objects: 100% (1121/1121), 850.49 KiB | 1.60 MiB/s, done.

Resolving deltas: 100% (517/517), done.

PTXdist is project centric, so now after changing into the new directory we have access to all valid components:

$ cd OSELAS.BSP-Pengutronix-Mini2440

Since GIT is a revision control system, we now have access to the full history of the Mini2440 Board Support
Package. And since GIT is a revision control system we have to keep in mind, the current cloned revision might
be a development revision and may not work or its build may fail. What we need now is to checkout a released
revision. This can be done with the following command:

$ git checkout OSELAS.BSP-Pengutronix-Mini2440-2015.01.0

With this checkout step we ensure we will work with a tested released revision. On the other hand with the
same step but a different tag we can move backward in time to an older release of the Mini2440 Board Support
Package. For example the following command will move backward to the last TAR archive based release:

$ git checkout OSELAS.BSP-Pengutronix-Mini2440-2013.10.0

Read theGITmanual how tomaintain your own changes ontop of the releasedMini2440 Board Support package
and be able to still follow the release cycle.

After checking out the OSELAS.BSP-Pengutronix-Mini2440-2015.01.0 tag, we have the following directory con-
tent:

total 68

-rw-r--r-- 1 jbe ptx 471 Jan 31 06:20 CONTRIBUTORS

-rw-r--r-- 1 jbe ptx 18002 Dec 23 2011 COPYING

20

4 Building a root filesystem for the Mini2440

-rw-r--r-- 1 jbe ptx 7562 Jan 31 06:20 Changelog

-rw-r--r-- 1 jbe ptx 4350 Apr 7 2012 FAQ

-rw-r--r-- 1 jbe ptx 177 Oct 17 2011 README

drwxr-xr-x 3 jbe ptx 4096 Jan 31 06:20 configs

drwxr-xr-x 3 jbe ptx 4096 Oct 17 2011 documentation

drwxr-xr-x 4 jbe ptx 4096 Dec 23 2011 local_src

drwxr-xr-x 3 jbe ptx 4096 Oct 17 2011 projectroot

drwxr-xr-x 2 jbe ptx 4096 Jan 31 06:20 protocol

drwxr-xr-x 2 jbe ptx 4096 Jun 12 2012 rules

Notes about some of the files and directories listed above:

ChangeLog Here you can read what has changed in this release.

FAQ Some questions and some answers

documentation This directory contains the Quickstart you are currenly reading in.

configs This directory contains the platform specific configuration files for the Mini2440.

projectroot Contains files and configuration for the target’s runtime. A running GNU/Linux system uses many
text files for runtime configuration. Most of the time the generic files from the PTXdist installation will fit
the needs. But if not, customized files are located in this directory.

local_src Application sources especially related to the Mini2440.

rules If something special is required to build the BSP for the target it is intended for, then this directory contains
these additional rules.

patches If some special patches are required to build the BSP for this target, then this directory contains these
patches on a per package basis.

protocol Contains the test protocol made for the release. Also known open issues if any.

4.2 Feature Dependend Configurations

The FriendlyARMMini2440 comes in various incarnations. Mostly they differ in the NANDmemory size, but also
other features may be present or not. Read the following sub-sections to adapt this board support package to
meet exactly your Mini2440 requirements.

Note: In this documentation the FriendlyARMMini2440with 64MiB of NANDmemory is the reference platform.
However, everything mentioned herein is also valid for Mini2440s shipped with more than 64 MiB of NAND.

4.2.1 Identify Your Mini2440

The FriendlyARM Mini2440s are shipped with various NAND memory sizes. The smallest is a 64 MiB unit, the
largest one comes with 1 GiB of NANDmemory.

As this kind of memory needs some special treatment depending on its internal layout, we must distinguish be-
tween them prior to generating any images. This board support package comes with two configurations:

• platformconfig-NAND-64M for the Mini2440 with 64 MiB of NANDmemory

– the NAND device is marked with the text K9F1208

21

4 Building a root filesystem for the Mini2440

• platformconfig-NAND-128M for the Mini2440 with 128 MiB of NANDmemory or more

– these NAND devices are marked with the text K9F1G08, K9F2G08 or K9K8G08.

This is important while performing the platform selection step in section 4.4. As this section references
the 64 MiB NAND configuration (platformconfig-NAND-64M), we must select the 128 MiB configuration
(platformconfig-NAND-128M) instead, if we are using a NANDmemory larger than 64 MiB.

Running a 64 MiB configuration on a 128 MiB (or above) Mini2440 will give us many confusing
error messages (the same the other way around).

What differs in both configurations:

• erase block size (16 kiB versus 128 kiB)

• JFFS2 root filesystem creation (needs different parameters)

• count of spare blocks (important for NANDmemory usage)

• partition sizes (due to different spare block counts)

4.2.2 Network Adaptions

The default network configurations for the bootloader and the Linux kernel are located in different files in this
board support package. These files must be changed in order to meet the local network requirements, to enable
the bootloader and the Linux kernel to communicate via network.

The network configuration can still be changed later on when the Mini2440 is up and running.
Changing it prior the build is more for convenience.

4.2.2.1 Bootloader Barebox

As there is no generic network setting available, some changes to our own network should be done prior building
the board support package.

To do so, we should open one of the following files with our favourite editor:

• configs/platform-friendlyarm-mini2440/barebox-64m-env/config if we are using a Mini2440 with 64
MiB NAND

• configs/platform-friendlyarm-mini2440/barebox-128m-env/config if we are using a Mini2440 with 128
MiB or larger NAND

These settings are relevant only for the bootloader. The file content will be the default settings later on, when
we are using the Mini2440. Default settings mean they can be permanently changed at run-time later on. But,
whenever the bootloader loses its environment it will fall back to the settings in this file. So, to avoid making
more changes at run-time than required, we should do the settings carefully here.

We can keep the ip=dhcp option enabled. This requires a DHCP server in the network to be able to update the
NAND memory content or to use NFS root filesystem while developing our application. In this case at least the
eth0.ethaddrmust be set, to give our network device a unique MAC address.

22

4 Building a root filesystem for the Mini2440

If no DHCP server is available, a static network setting can be used instead. We just comment out the ip=dhcp
option and enable all the eth0.* lines and give them appropriate values.

If we want to use an NFS based root filesystem, we also should adapt the nfsroot setting.

Don’t forget the setting of a unique MAC address. At least the entry eth0.ethaddrmust be set.

4.2.2.2 Linux Kernel

To define network settings used at the run-time of the Linux kernel, we must adapt the file
configs/platform-friendlyarm-mini2440/projectroot/etc/network/interfaces instead.

4.2.3 Feature Adaptions

Other features of the Mini2440 are:

• the attached LCD

• if the touch facility is used

• if a camera is present

These features can be enabled/disabled or configured at run-time with the kernel parameter mini2440=. The
content of this parameter is also configured in the config files mentioned above.

It is important that the LCD is configured correctly, so that it works at run-time. Here is a list of currently known
LCDs:

• 0 N35: 3.5” TFT + touchscreen (NEC NL2432HC22-23B/LCDN3502-23B)

• 1 A70: 7” TFT + touchscreen (Innolux AT070TN83)

• 2: VGA shield

• 3 t35: 3.5” TFT + touchscreen (TD035STED4)

• 4: 5.6” TFT + touchscreen (Innolux AT056TN52)

• 5 x35: 3.5” TFT + touchscreen (Sony ACX502BMU-7)

• 6 w35i: 3.5” TFT + touchscreen (Sharp LQ035Q1DG06)

• 7 N43: 4.3” TFT + touchscreen (NEC NL4827HC19-01B / Sharp LQ043T3DX02)

The list above corresponds to the number (beginning with 0) given to the mini2440= kernel parameter to define
the LCD in use.

When starting the kernel later on, it will output the list of supported displays with the currently selected one
embraced.

MINI2440: LCD [0:240x320] 1:800x480 2:1024x768 3:240x320 4:640x480 5:240x320 6:320x240 7:480x272

23

4 Building a root filesystem for the Mini2440

As all of these existing LCDs differ in size and resolution, also userland may need more information than only
their resolution. If we runQt based applications the Qt librarymust know some additional data about the display
as well. At least the physical size of the visible display area is an important value, as Qt uses this information to
calculate the font’s scale.

The following changes are not required if you are using the 3.x kernel of this BSP. This kernel
provides the visible size of the attached screen to userland. If you are using a different kernel,
or the VGA shield the following changes are still to be done.

The BSP comes with a pre-configuration for the portrait N35 240 x 320 display. Its visible display area size is:
width 53 mm, height 71 mm.

To forward this additional information toQt, the fileconfigs/platform-friendlyarm-mini2440/projectroot/etc/profile.environment
exists in the BSP. We can edit it prior the build and change the size settings according to our own display if it
differs from the default one. This file will be part of the root filesystem and used at run-time.

After these changes are made, we can continue building the board support package.

4.3 Selecting a Userland Configuration

First of all we have to select a userland configuration. This step defines what kind of applications will be built for
the hardware platform. The OSELAS.BSP-Pengutronix-Mini2440-2015.01.0 comes with a predefined configura-
tion we select in the following step:

$ ptxdist select configs/ptxconfig

info: selected ptxconfig:

’configs/ptxconfig’

4.4 Selecting a Hardware Platform

Before we can build this BSP, we need to select one of the possible platforms to build for. In this case we want to
build for the Mini2440:

$ ptxdist platform configs/platform-friendlyarm-mini2440/platformconfig-NAND-64M

info: selected platformconfig:

’configs/platform-friendlyarm-mini2440/platformconfig-NAND-64M’

Note: If you have installed the OSELAS.Toolchain() at its default location, PTXdist should already have detected
the proper toolchain while selecting the platform. In this case it will output:

found and using toolchain:

’/opt/OSELAS.Toolchain-2014.12.0/arm-v4t-linux-gnueabi/↵
gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized/bin’

If it fails you can continue to select the toolchain manually as mentioned in the next section. If this autodetection
was successful, you can omit the step of the next section and continue to build the BSP.

24

4 Building a root filesystem for the Mini2440

4.5 Selecting a Toolchain

If not automatically detected, the last step in selecting various configurations is to select the toolchain to be used
to build everything for the target.

$ ptxdist toolchain /opt/OSELAS.Toolchain-2014.12.0/arm-v4t-linux-gnueabi/↵
gcc-4.9.2-glibc-2.20-binutils-2.24-kernel-3.16-sanitized/bin

4.6 Building the Root Filesystem

Now everything is prepared for PTXdist to compile the BSP. Starting the engines is simply done with:

$ ptxdist go

PTXdist does now automatically find out from the selected_ptxconfigand selected_platformconfig files which
packages belong to the project and starts compiling their targetinstall stages (that one that actually puts the com-
piled binaries into the root filesystem). While doing this, PTXdist finds out about all the dependencies between
the packages and builds them in the correct order.

While the command ptxdist go is running we can watch it building all the different stages of a package. In the
end the final root filesystem for the target board can be found in the platform-mini2440/root/ directory and a
bunch of *.ipk packets in the platform-mini2440/packages/directory, containing the single applications the root
filesystem consists of.

4.7 Building an Image

After we have built a root filesystem, we canmake an image, which can be flashed to the target device. To do this
call

$ ptxdist images

PTXdist will then extract the content of priorly created *.ipk packages to a temporary directory and generate an
image out of it. PTXdist supports following image types:

• hd.img: contains grub bootloader, kernel and root files in a ext2 partition. Mostly used for x86 target
systems.

• root.jffs2: root files inside a jffs2 filesystem.

• uRamdisk: a barebox/u-boot loadable Ramdisk

• initrd.gz: a traditional initrd RAM disk to be used as initrdramfs by the kernel

• root.ext2: root files inside a ext2 filesystem.

• root.squashfs: root files inside a squashfs filesystem.

• root.tgz: root files inside a plain gzip compressed tar ball.

• root.ubi: root files inside a ubi volume.

The to be generated image types and addtional options can be defined with

$ ptxdist platformconfig

25

4 Building a root filesystem for the Mini2440

Then select the submenu “image creation options”. The generated image will be placed into
platform-mini2440/images/.

Only the content of the *.ipk packages will be used to generate the image. This means that files
which are put manually into the platform-mini2440/root/will not be enclosed in the image. If
custom files are needed for the target, install them with PTXdist.

26

5 Bring in the Bootloader Barebox

In order to make use of all possible boot sources the bootloader Barebox must be installed into the Mini2440.
This bootloader enables the following boot sources:

• NAND flash memory: This enables the Mini2440 to boot standalone and very fast

• SD/MMC card: This enables the user to change all relevant software parts very easy by changing the
SD/MMC card

• Network: This is intended for easy development

What we need for this step:

• a working network infrastructure

• host with network and USB capabilities

• a working TFTP server on our host

• some cables

– network

– USB-A to USB-B

– RS232

• serial terminal running on our host

We assume here:

• the directory of the TFTP server is /tftpboot

• network is already configured for the host and the target (refer section 4.2.2)

• all connections are done (network, USB, serial)

• the serial terminal is able to handle 8 bits at 115200 Bd

To load the kernel and rootfs images, we first must load the new bootloader. This is the trickiest part, as we need
special tools on our host and the target. Also, we may have to deal with confusing error messages.

First of all, wemust change the S2 switch on ourMini2440 to the NORposition to start the internal vivi bootloader.
After switching on the Mini2440, the vivi bootloader will greet us with:

FriendlyARM BIOS for 2440

[x] bon part 0 320k 2368k

[v] Download vivi

[k] Download linux kernel

[y] Download root_yaffs image

[a] Absolute User Application

[n] Download Nboot

[l] Download WinCE boot-logo

27

5 Bring in the Bootloader Barebox

[w] Download WinCE NK.bin

[d] Download & Run

[z] Download zImage into RAM

[g] Boot linux from RAM

[f] Format the nand flash

[b] Boot the system

[s] Set the boot parameters

[u] Backup NAND Flash to HOST through USB(upload)

[r] Restore NAND Flash from HOST through USB

[q] Goto shell of vivi

[i] Version: 1026-12

Enter your selection:

Wewant to use the vivi bootloader to load the new Barebox bootloader into the Mini2440’s RAM. In order to do
so, we need the size in bytes of Barebox’s binary:

$ ls -l platform-mini2440/images/barebox-image

-rw-r--r-- 1 jb user 149484 16. Dez 11:05 platform-mini2440/images/barebox-image

The size of this binary may differ in your case. In our case here it is 149484.

With this size we instruct the vivi bootloader to expect this number of bytes from the USB and store it to the
internal RAM. To do so, we enter ’q’ to enter vivi’s shell. Then we start the download command.

Enter your selection: q

Supervivi> load ram 0x31000000 149484 u

Please consider the 149484 number here. This number must be the same as size of your Barebox image.

At this point of time many error messages can happen. The Mini2440 may output USB host is not connected

yet. In this case disconnect the USB cable again, powercycle the Mini2440 and try again.

At the host side, the system may not be able to enumerate the Mini2440 correctly. In this case also disconnect
the Mini2440, powercycle it and connect it again.

You can check that the host was able to enumerate the Mini2440 successfully by issuing the lsusb command. If
the following line occurs in the list, the Mini2440 is successfully enumerated:

Bus 001 Device 023: ID 5345:1234 Owon PDS6062T Oscilloscope

Note: The bus and device number may differ in your case.

If the USB connection is up and working on both sides, we can start to push the new bootloader into the target.
This BSP comes with the required tool to do so.

$ sudo platform-mini2440/sysroot-host/bin/usbpush platform-mini2440/images/barebox-image

If the transfer was successful, the usbpush host tool will output:

csum = 0x3fc7

send_file: addr = 0x30000000, len = 0x000247ec

At the target side we will see:

Now, Downloading [ADDRESS:31000000h,TOTAL:149494]

RECEIVED FILE SIZE: 149494 (145KB/S, 1S)

Downloaded file at 0x31000000, size = 149484 bytes

28

5 Bring in the Bootloader Barebox

Note: The numbers shown above may be different then what you see.

After a successful transfer, we can now run the downloaded bootloader:

Supervivi> go 0x31000000

go to 0x31000000

argument 0 = 0x00000000

argument 1 = 0x00000000

argument 2 = 0x00000000

argument 3 = 0x00000000

This will start the Barebox bootloader on the Mini2440, which will greet us with:

barebox 2011.05.0-mini2440-ptx-2012.12.0 (Oct 4 2013 - 19:13:10)

Board: Mini 2440

NAND device: Manufacturer ID: 0xec, Chip ID: 0x76 (Samsung NAND 64MiB 3,3V 8-bit)

Bad block table found at page 131040, version 0x01

Bad block table found at page 131008, version 0x01

dm9000 i/o: 0x20000300, id: 0x90000a46

eth@eth0: got MAC address from EEPROM: FF:FF:FF:FF:FF:FF

refclk: 12000 kHz

mpll: 405000 kHz

upll: 48000 kHz

fclk: 405000 kHz

hclk: 101250 kHz

pclk: 50625 kHz

SDRAM1: CL4@101MHz

SDRAM2: CL4@101MHz

Malloc space: 0x33a00000 -> 0x33e00000 (size 4 MB)

Stack space : 0x339f8000 -> 0x33a00000 (size 32 kB)

envfs: wrong magic on /dev/env0

no valid environment found on /dev/env0. Using default environment

running /env/bin/init...

Hit any key to stop autoboot: 3

Stop the autoboot timeout by hitting any key. We are now in the shell environment of Barebox. To update the
NAND content in the next step we need a working network first. One check is to show the current setting of the
network interface. You should see your own settings here, done in section 4.2.2. Here is an example for a static
network configuration:

mini2440:/ devinfo eth0

base : 0x00000000

size : 0x00000000

driver: none

Parameters:

ipaddr = 192.168.1.240

ethaddr = 00:04:f3:00:06:35

gateway = 192.168.1.2

netmask = 255.255.255.0

serverip = 192.168.1.7

If you do not see appropriate values here and you are using the DHCP option, run the dhcp command first:

29

5 Bring in the Bootloader Barebox

mini2440:/ dhcp

DHCP client bound to address 192.168.1.27

If you do not useDHCP for network configuration, youmust edit the file /env/config in the Barebox environment.

mini2440:/ edit /env/config

Note: Barebox supports auto completion of commands, paths and filenames. Use the well known TAB key.

Edit the lines beginningwith eth0.*and give them appropriate values. We can leave the editor by hitting CTRL-D
to save our changes, or CTRL-C to discard any change. If we want these new settings to be persistent, we can
save them now to NAND:

mini2440:/ saveenv

For further explanation about the default (compiled-in) Barebox environment and the “user defined” Barebox
environment in NAND, see section 8.21.1.

To make the new static network configuration work, we must execute the config file again:

mini2440:/ . /env/config

Running the devinfo eth0 command again should now show the values for the network interface that you put in
earlier. To check if it is really working, try pinging other hosts:

mini2440:/ ping 192.168.1.7

host 192.168.1.7 is alive

In order to store the bootloader Barebox into the NAND, we can now use some of the builtin features in Barebox.

First we must copy - at the host side - the Barebox image from the board support package to the directory used
by the TFTP server:

$ cp platform-mini2440/images/barebox-image /tftpboot/barebox-mini2440

Due to some scripts from the compiled-in environment and already setting up the network, storing Barebox into
the NAND is now very easy:

mini2440:/ update -t barebox -d nand

That’s all. To boot using the new bootloader, we must now change the switch S2 back to the NAND position.
Power cycle the Mini2440 or press its reset button and the new bootloader will start.

After installing Barebox on the Mini2440 the hardest part is done. Now it’s time to decide about how to boot the
Mini2440.

30

6 How to Boot the Mini2440

Various methods are exist to bring up the Mini2440. The main difference is if the Mini2440 can boot in a stan-
dalone manner or if it depends on some services from another host via network.

To start theMini2440 in a standalonemanner it provides some local memory types to store the relevant software
parts.

• NOR type flash memory can be used to bring up theMini2440. In this BSP NOR is used for the initial boot-
load of Barebox and as a fall-back or rescue bootloader. This allows the user to easily restore a ”bricked”
Mini2440.

• NAND type flash memoryprovides enoughmemory space tohold all run-time relevant softwareparts. This
board support package supports this memory type as one way to start the Mini2440 standalone.

• SD/MMC card memory is a nice and easy way to deploy the run-time relevant software parts at the develop-
ment host and simply booting the Mini2440 with it.

Note: All thementionedbootmethodsbelow requireBarebox as their bootloader. The easiestway to get Barebox
into the Mini2440 is via its internal NAND. So, at least Barebox and its persistent environment has to be stored
into theNAND flashmemory. The other parts (kernel and root filesystem) can be loaded from all other supported
media.

6.1 NOR Type Flash Memory

Starting the Mini2440 via this type of memory is intended as a fall-back or rescue bootloader if everything else is
broken. Its usage is not intended to boot a regular Linux system.

6.2 NAND Type Flash Memory

This is the most common method to boot the Mini2440. It does not depend on any external media or network
connection. And it is also a fast method to boot it.

To use the NAND flash as the boot media, this board support package creates two files when running the last
ptxdist images step:

• platform-mini2440/images/linuximage is the Linux kernel andmust be stored in the correspondingNAND
partition

• platform-mini2440/images/root.jffs2 contains the root filesystem and must be stored ’as is’ in the cor-
responding NAND partition

31

6 How to Boot the Mini2440

At our host’s side:

$ cp platform-mini2440/images/root.jffs2 /tftpboot/root-mini2440.jffs2

$ cp platform-mini2440/images/linuximage /tftpboot/uImage-mini2440

Then we can run a script at the Mini2440’s side to bring in the files into the NANDmemory:

mini2440:/ update -t rootfs -d nand

mini2440:/ update -t kernel -d nand

Corresponding setup in the Barebox’s /env/config:

kernel_loc=nand

rootfs_loc=nand

Specific settings in /env/config for the NAND case:

rootfs_type=jffs2

rootfs_mtdblock_nand=3

kernelimage_type=uimage

With these settings Barebox will automatically load the kernel from the NAND memory and instruct the kernel
to also use the NAND memory for its root filesystem. rootfs_mtdblock_nand defines the partition number in
the NAND memory the kernel should mount as its root filesystem. rootfs_type defines the used filesystem.
kernelimage_type defines the type of the kernel image, to make Barebox aware how to extract it.

Start manually:

mini2440:/ boot nand

The manual start from the NANDmemory requires the following specific settings in the /env/config:

rootfs_mtdblock_type=jffs2

rootfs_mtdblock_nand=3

kernelimage_type=uimage

6.3 SD/MMC Card Memory

Tohave all run-time relevant parts on an SD/MMCcard, somehelp from theNAND type flashmemory is required:
the Barebox bootloader must be present to be able to load the Linux kernel from the SD/MMCmedia.

To deploy the card we just partitionate it and create a filesystem on the second partition. As this kind of media
behaves like a regular hard disk, we can use any filesystem we like. But there is still a risk: this kind of media
uses flash memory internally. And writing it often will destroy it over the time. That’s why at least a journaling
filesystemmight not be a good idea, as they tend towritemore data andmore often as non journaling filesystems.

32

6 How to Boot the Mini2440

The generic Barebox’s environment is prepared for the kernel in the first partition, the root filesystem in the
second partition and ext2 as the selected filesystem. There is no policy to use it in this way, but any variation
would require some changes in the Barebox’s default environment.

To use an SD/MMC card as the bootmedia, this board support package comeswith two files after the last ptxdist
images step:

• platform-mini2440/images/linuximage is the Linux kernel and must be copied plainly into the first parti-
tion of the SD/MMC card

• platform-mini2440/images/root.tgz contains the root filesystem and must be untared to the formatted
second partition of the SD/MMC card

Note: The partition which contains the kernel image does not use any kind of filesystem. So, the kernel’s image
is copied to the device, not to its filesystem.

Persistent setup in the Barebox’s /env/config.

kernel_loc=mmc

rootfs_loc=mmc

Specific settings in /env/config for the SD/MMC case:

rootfs_type=ext2

rootfs_mmc_part=2

kernel_mmc_part=0

kernelimage_type=uimage

With these settings Barebox will automatically load the kernel from the SD card and instruct the kernel to also
use the SD card as its root filesystem. kernel_mmc_part defines the SD/MMC card’s partition number to load
the kernel from. rootfs_mmc_part defines the partition on the SD/MMC card the kernel should use as its root
filesystem and rootfs_type defines the used filesystem. kernelimage_type defines the type of the kernel image,
to make Barebox aware how to extract it.

Start manually:

mini2440:/ boot mmc

The manual start from the SD/MMC card requires the following specific settings in the /env/config:

rootfs_type=ext2

rootfs_mmc_part=2

kernel_mmc_part=0

kernelimage_type=uimage

33

6 How to Boot the Mini2440

6.4 Network Memory

Using the network basedmethod to boot theMini2440 ismore dedicated for development. It simplifies replacing
software in the kernel and root filesystem. Also, the development cycle time can be reduced, with fewer oppor-
tunities for making errors. All run-time relevant software parts are still part of the development host in this case
and can be easily changed on the host and are instantly visible at the target’s side.

To use the network based method this board support package creates the following parts:

• platform-mini2440/images/linuximage is the Linux kernel and must be copied to the NFS or TFTP ex-
ported directory with a name the target expect it (in our case here for example uImage-mini2440)

• platform-mini2440/root/ contains the root filesystem to be exported via NFS

Persistent setup in the Barebox’s /env/config.

Using the TFTP protocol for downloading the kernel:

kernel_loc=tftp

rootfs_loc=net

Specific settings in /env/config for the TFTP case:

kernelimage=uImage-mini2440

kernelimage_type=uimage

nfsroot=”/path/to/nfs/root”

With these settings Barebox will automatically load the kernel with the name kernelimage via network from a
TFTP server and instruct it to use the path given in nfsroot as its root filesystem. kernelimage_type defines the
type of the kernel image, to make Barebox aware how to extract it.

Using the NFS protocol for downloading the kernel:

kernel_loc=nfs

rootfs_loc=net

Specific settings in /env/config for the NFS case:

kernelimage=uImage-mini2440

kernelimage_type=uimage

nfsroot=”/path/to/nfs/root”

With these settings Barebox will automatically load the kernel with the name kernelimage via network from a
server via TFTP protocol and instruct it to use the path given in nfsroot as its root filesystem on the same server
via Network File System (NFS). kernelimage_type defines the type of the kernel image, to make Barebox aware
how to extract it.

Start manually and download the kernel via TFTP:

34

6 How to Boot the Mini2440

mini2440:/ boot tftp

The manual start from a TFTP server requires the following specific settings in the /env/config:

kernelimage=uImage-mini2440

kernelimage_type=uimage

nfsroot=”/path/to/nfs/root”

Start manually and download the kernel via NFS:

mini2440:/ boot nfs

The manual start from an NFS server requires the following specific settings in the /env/config:

kernelimage=uImage-mini2440

kernelimage_type=uimage

nfsroot=”/path/to/nfs/root”

6.5 Adaptions

Asmentioned above all settings are based on changes in a simple text file. Wheneverwe run the ’boot’ command,
the script in /env/bin/boot is called. So, adaptions can bemade in /env/config to use one of the supported boot
methods in /env/bin/boot. For more complicated scenarious also the /env/bin/boot can be changed. As it’s a
simple shell script, it’s very easy to adapt it to different requirements.

35

7 Updating the Mini2440

At any time it’s possible to update any of the software components running on the Mini2440.

• the bootloader Barebox

• Barebox’s persistent environment

• the Linux kernel

• the kernel’s root filesystem

This chapter explains how toupdate theseparts for the various boot scenarious. Note: This chapter is not finished
yet.

7.1 NOR flash memory case

It is possible to install Barebox to the Mini2440’s NOR flash memory in order to use it as a fall-back or rescue
bootloader, in case the main copy of Barebox in the NAND flash is corrupted. This step is optional – you can also
leave the default vivi bootloader in NOR.

To install Barebox to NOR, you can just use the following command:

mini2440:/ update -t barebox -d nor

Note that the NOR flash is internally disabled when the Mini2440 boots from NAND. It will only work:

• If the system boots from NOR and the default vivi bootloader is then used to download Barebox to RAM

• Once Barebox is installed to NOR, when the system boots Barebox directly from NOR

Since the copyof Barebox inNORshouldonly beused as a fall-back in case theNAND flash is corrupted, by default
the init script will not autoboot Linux when the Mini2440 boots from NOR. Instead it will drop you directly at the
Barebox shell.

7.2 NAND flash memory case

If theMini2440 uses the NAND flashmemory to boot standalone, we can update its components in the following
way:

7.2.1 Updating the Bootloader

Most of the time there is no further need to re-flash the bootloader and its persistent environment. After it was
setup once, it does its work ”in the background”. But nevertheless there could be the need to update the boot-
loader due to feature additions or bug fixes. If the current Barebox bootloader is still working, its replacement
can be done by using the existing bootloader. This assumes that the network is still functioning. In this case, a
simple

36

7 Updating the Mini2440

$ cp platform-mini2440/images/barebox-image /tftpboot/barebox-mini2440

provides the updated bootloader binary via TFTP and a

mini2440:/ update -t barebox -d nand

will do the job at the target side. After starting this command, do not disturb! This is a critical update process.
Because, for a short period of time the NAND flash is erased, with no bootloader present. But don’t panic: Unless
a power fail or a target reset happens, this command can be repeated if the first run failed.

7.2.2 Updating the Persistent Environment

Updating the persistent environment is also possible. A simple

$ cp platform-mini2440/images/barebox-default-environment /tftpboot/barebox-default-environment- ↵
mini2440

provides the updated environment via TFTP and a

mini2440:/ update -t bareboxenv -d nand

will do the job. Note: This new persistent environment will be used at the next system start.

If the persistent environment is broken, there is a second method to restore a working environment: that is,
using the compiled in default environment which comes with Barebox. To force the usage of the compiled in
default environment, just erase the current one in the NAND flash memory and reset the target (or run the reset
command).

mini2440:/ erase /dev/bareboxenv.bb

mini2440:/ reset

Now, Barebox will stumble about the empty partition and then fall back to its compiled-in environment version.
This can now be changed by editing the files in env/ and then saved back to the NAND flash memory with the
command

mini2440:/ saveenv

7.2.3 Updating the Linux Kernel

Changing the Linux kernel configuration can be quite dynamic, especially while the developer is trying different
kernel configurations. Updating this part happens in the sameway like the other parts. Providing the Linux kernel
via TFTP:

$ cp platform-mini2440/images/linuximage /tftpboot/uImage-mini2440

and running the update script at the target’s side:

mini2440:/ update -t kernel -d nand

37

7 Updating the Mini2440

7.2.4 Updating the Root Filesystem

And last, but not least, updating the root filesystem. Same procedure:

$ cp platform-mini2440/images/root.jffs2 /tftpboot/root-mini2440.jffs2

and running the update script at the target’s side:

mini2440:/ update -t rootfs -d nand

7.3 SD/MMC card memory case

We assume here the partitioning is done as mentioned in section 6.3: two partitions on the SD/MMC card, first
contains the kernel image and no filesystem, second contains the root filesystem content with a filesystem we
like. We also assume here, updating the card content is not done at the target’s side, it is still done at our host.
This means, we are using some kind of USB based card reader and these kind of devices show us the attached
cards as SCSI devices.

7.3.1 Updating the Linux Kernel

Changing the kernel is rather simple:

$ sudo cp platform-mini2440/images/linuximage /dev/sdd1

Note: Replace the /dev/sdd1 here with the device node name the card reader is visible in your system.

7.3.2 Updating the Root Filesystem

Changing the root filesystem content mostly means wemust remove its old content. This can be done quickly by
re-formatting it.

$ sudo mkfs.ext2 /dev/sdd2

$ sudo mount /dev/sdd2 /mnt

$ sudo tar -xvzf platform-mini2440/images/root.tgz -C /mnt

$ sudo umount /mnt

7.4 Network memory case

As this kind of memory is on our host, everything we change will be also changed instantly at theMini2440’s side
(as long we are talking about the kernel and the root filesystem).

By the way: the update command is not a real command built into Barebox. Its a simple shell script coming
from the persistent environment. If one has different update scenarios she/he can change or adapt this script.
Changing this behaviour can be done without touching Barebox’s source code.

38

8 Special Notes

8.1 Available Kernel Releases

The predifinedMini2440 platform configuration always uses the latest Linux kernel release. If users want to stay
with an older Linux kernel release, they are still available and also some of them are still maintained. Here is a
list of currently available Linux kernel releases in the OSELAS.BSP-Pengutronix-Mini2440-2015.01.0:

• 3.16 *), stable patch level 7

• 3.15 *), stable patch level 7

• 3.14, stable patch level 31

• 3.13 *), stable patch level 11

• 3.12, stable patch level 37

• 3.11 *), stable patch level 10 **)

• 3.10, stable patch level 38 **)

• 3.9 *), stable patch level 11

• 3.8 *), stable patch level 13

• 3.7 *), stable patch level 10

• 3.6 *), stable patch level 11

• 3.5 *), stable patch level 7

• 3.4, stable patch level 105

• 3.3 *), stable patch level 8

• 3.2, stable patch level 66

• 3.1 *), stable patch level 10

• 3.0 *), stable patch level 101

• 2.6.39 *), stable patch level 4

• 2.6.38 *), stable patch level 8

*) end of life, no further stable releases will be available
*) don’t use this kernel release. It is broken on the S3C2440 SoC

If we want to build the BSP with a non-default kernel release, we just run ptxdist platformconfig and change
the kernel setting prior to building. As PTXdist checks the MD5 sums of the archives, we also have to change the
MD5 sum of the corresponding kernel archive.

Note: The MD5 sums for the kernels are (used by PTXdist):

39

8 Special Notes

• 3.16: 5c569ed649a0c9711879f333e90c5386

• 3.15: 97ca1625bb40368dc41b9a7971549071

• 3.14: b621207b3f6ecbb67db18b13258f8ea8

• 3.13: 0ecbaf65c00374eb4a826c2f9f37606f

• 3.12: cc6ee608854e0da4b64f6c1ff8b6398c

• 3.11: fea363551ff45fbe4cb88497b863b261

• 3.10: 4f25cd5bec5f8d5a7d935b3f2ccb8481

• 3.9: 4348c9b6b2eb3144d601e87c19d5d909

• 3.8: 1c738edfc54e7c65faeb90c436104e2f

• 3.7: 21223369d682bcf44bcdfe1521095983

• 3.6: 1a1760420eac802c541a20ab51a093d1

• 3.5: 24153eaaa81dedc9481ada8cd9c3b83d

• 3.4: 967f72983655e2479f951195953e8480

• 3.3: 7133f5a2086a7d7ef97abac610c094f5

• 3.2: 364066fa18767ec0ae5f4e4abcf9dc51

• 3.1: edbdc798f23ae0f8045c82f6fa22c536

• 3.0: ecf932280e2441bdd992423ef3d55f8f

• 2.6.39: 25cd73d797a49ad5b4119b67f1caf2cc

• 2.6.38: 0f28e3a47495ede6ff8b5d5c97680fe5

For older PTXdist revisions than 2012.05.0 the kernel’s archive format is bz2 instead of the newer xz. Here are the
MD5 sums for reference for the bz2 format.

• 3.3: 98a6cdd7d082b7ea72df9c89842bac74

• 3.2: 7ceb61f87c097fc17509844b71268935

• 3.1: 8d43453f8159b2332ad410b19d86a931

• 3.0: 398e95866794def22b12dfbc15ce89c0

• 2.6.39: 1aab7a741abe08d42e8eccf20de61e05

• 2.6.38: 7d471477bfa67546f902da62227fa976

Be aware of a specific kernel and toolchain relationship. Our OSELAS toolchains are configured
to create code which has minimal run-time requirements to the Linux kernel version. The cur-
rently configured OSELAS.Toolchain release creates code which needs at least a Linux-3.16 at
runtime.

If you want to keep an older Linux version, you must change back to an older OSELAS.Toolchain release. Here is
a list of OSELAS.Toolchain releases and their minimal Linux kernel run-time requirements:

• OSELAS.Toolchain-2014.12.x: Linux-3.16

40

8 Special Notes

• OSELAS.Toolchain-2013.12.x: Linux-3.12

• OSELAS.Toolchain-2012.12.x: Linux-3.6

• OSELAS.Toolchain-2011.11.x: Linux-2.6.39

• OSELAS.Toolchain-2011.03.x: Linux-2.6.36

Please note: we only do build tests with the most recent OSELAS.Toolchain release. If you change back to an
older OSELAS.Toolchain version building the BSP may fail.

8.2 Available Userland Configuration

The Mini2440 BSP comes with two different predefined userland configurations:

• configs/ptxconfig: it is the standard one to get a small running embedded system. It can be used as a
base for your own development running the Mini2440 headless.

• configs/ptxconfig.qt: this configuration is intended for graphical usage of the Mini2440. It has the Qt
library enabled and brings in two small Qt based application examples. These applications will be started
automatically at system’s startup, to show how to get a graphical system up and running.

It’s up to you and your needs which configuration you may choose in section 4.3.

8.2.1 Some details about the configs/ptxconfig.qt

The mentioned small Qt based applications we can find in local_src/qt4-demo-2011.12.0/ and
local_src/qml-demo-2011.12.0/. They can act as a template for our own Qt development.

As only one of these Qt applications can run at system start, we have to select which one we want to run prior
the build of the BSP. To do so, after selecting the configs/ptxconfig.qt configuration, we run menuconfig and
select one of the available demos. The Qt4/QWT demo is the default one.

$ ptxdist menuconfig

Graphics & Multimedia --->

qt --->

<*> Mini2440 related Qt demos --->

Demo type (Qt4/QWT demo) --->

(X) Qt4/QWT demo

() Qt4/QML demo

The ”secrets” how to build and install these applications we can find in

• mini2440-demo.in

• rules/qt4-demo.make

• rules/qml-demo.make

The ”magic” behind the autostart of these small Qt based applications at system startup can be found in
local_src/qt4-demo-2011.12.0/init/sysv/startup and local_src/qml-demo-2011.12.0/init/sysv/startup.

Note: TheQt4/QWTdemo is prepared to run on a portrait 240 x 320 screen. If your screen differs from this setup,
don’t expect a correct image. The Qt4/QML demo adapts itself to the available screen size and format.

41

8 Special Notes

8.3 Framebuffer

This driver gains access to the display via device node /dev/fb0. For this BSP the LCDN3502-23B (N35) display
with a resolution of 240x320 is supported.

A simple test of this feature can be run with:

fbtest

This will show various pictures on the display.

You can check your framebuffer resolution with the command

fbset

NOTE: fbset cannot be used to change display resolution or colour depth. Depending on the framebuffer device
different kernel command line may be needed to do this. Please refer to your display driver manual for details.

8.4 GPIO

Like most modern System-on-Chip CPUs, the S3C2440 has numerous GPIO pins. Some of them are inaccessi-
ble for the userspace, as Linux drivers use them internally. Others are also used by drivers but are exposed to
userspace via sysfs. Finally, the remaining GPIOs can be requested for custom use by userspace, also via sysfs.

Refer to the in-kernel documentation Documentation/gpio.txt for complete details how to use the sysfs-interface
for manually exporting GPIOs.

8.4.1 GPIO Usage Example

When generic architecture GPIO support is enabled in the kernel, some new entries appear in sysfs. Everything
is controlled via read and writable files to generate events on the digital lines.

We find all the control files in /sys/class/gpio. In that path, there are a number of gpiochipXXXentries, with XXX
being a decimal number. Each of these folders provide information about a single GPIO controller registered on
the Mini2440 board, for example with gpiochip192:

ls /sys/class/gpio/gpiochip192

base label ngpio subsystem uevent

The entry base contains information about the base GPIO number and ngpio contains all GPIOs provided by this
GPIO controller.
We use GPIO193 as an example to show the usage of a single GPIO pin.

echo 193 > /sys/class/gpio/export

This way we export gpio193 for userspace usage. If the export was successful, we will find a new directory named
/sys/class/gpio/gpio193 afterwards. Within this directory we will be able to find the entries to access the func-
tions of this GPIO. If we wish to set the direction and initial level of the GPIO, we can use the command:

echo high > /sys/class/gpio193/direction

42

8 Special Notes

This way we export GPIO193 for userspace usage and define our GPIO’s direction attribute to an output with
initially high level. We can change the value or direction of this GPIO by using the entries direction or value.

Note: This method is not very fast, so for quickly changing GPIOs it is still necessary to write a kernel driver. The
method shown works well, for example to influence an LED directly from userspace.

To unexport an already exported GPIO, write the corresponding gpio-number into /sys/class/gpio/export.

echo 193 > /sys/class/gpio/unexport

Now the directory /sys/class/gpio/gpio193will disappear.

Note: The GPIO193 is available at connector 4, pin 17 for measurement.

8.5 I²C Master

The S3C2440 processor based Mini2440 supports a dedicated I²C controller onchip. The kernel supports this
controller as a master controller.

Additional I²C device drivers can use the standard I²C device API to gain access to their devices through this
master controller. For further information about the I²C framework see Documentation/i2c in the kernel source
tree.

8.5.1 I²C Device AT24c08

This device is a 1024 bytes non-volatile memory for general purpose usage.

This type of memory is accessible through the sysfs filesystem. To read the EEPROM content simply open() the
entry /sys/bus/i2c/devices/0-0050/eeprom and use fseek() and read() to get the values.

8.6 LEDs

The LEDs on the Mini2440 can be controlled via the LED-subsystem of the Linux kernel. It provides methods
for switching them on and off as well as using so-called triggers. For example, you could trigger the LED using a
timer. That enables us to make it blink with any frequency we want.

All LEDs can be found in the directory /sys/class/leds. Each one has its own subdirectory. We will use led1 for
the following examples.

For each directory, you have a file named brightnesswhich can be read andwrittenwith a decimal value between
0 and 255. The first one means LED off, the latter maximum brightness. Inbetween values scale the brightness if
the LED supports that. If not, non-zero means just LED on.

/sys/class/leds/led1# echo 255 > brightness; # LED on

/sys/class/leds/led1# echo 128 > brightness; # LED at 50% (if supported)

/sys/class/leds/led1# echo 0 > brightness; # LED off

LEDs can be connected to triggers. A list of available triggers we can get from the trigger entry

/sys/class/leds/led1# cat trigger

[none] nand-disk mmc0 timer backlight

43

8 Special Notes

The embraced entry is the currectly connected trigger to this LED.

To change the trigger source to the timer, just run a:

/sys/class/leds/led1# echo timer > trigger

If the timer-trigger is activated you should see two additional files in the current directory, namely delay_on and
delay_off. You can read and write decimal values there, which will set the corresponding delay in milliseconds.
As an example:

/sys/class/leds/led1# echo 250 > delay_on

/sys/class/leds/led1# echo 750 > delay_off

will blink the LED being on for 250ms and off for 750 ms.

Replace timerwith none to disable the trigger again. Or select a different one from the list read from the trigger
entry.

Refer to Documentation/leds/leds-class.txt in-kernel documentation for further details about this subsystem.

8.7 MMC/SD Card

The Mini2440 supports Secure Digital Cards andMulti Media Cards to be used as general purpose blockdevices.
These devices can be used in the same way as any other blockdevice.

These kind of devices are hot pluggable, so you must pay attention not to unplug the device
while its still mounted. This may result in data loss.

After inserting anMMC/SD card, the kernelwill generate newdevice nodes in dev/. The full device canbe reached
via its /dev/mmcblk0 device node, MMC/SD card partitions will occur in the following way:

/dev/mmcblk0pY

Y counts as the partition number starting from 1 to the max count of partitions on this device.

Note: These partition device nodes will only occur if the card contains a valid partition table (”harddisk” like
handling). If it does not contain one, the whole device can be used for a filesystem (”floppy” like handling). In
this case /dev/mmcblk0must be used for formatting and mounting.

The partitions can be formattedwith any kind of filesystem and also handled in a standardmanner, e.g. the mount
and umount command work as expected.

8.8 Network

The Mini2440 module has a DM9000 ethernet chip onboard, which is being used to provide the eth0 network
interface. The interface offers a standard Linux network port which can be programmed using the BSD socket
interface.

44

8 Special Notes

8.9 SPI Master

The Mini2440 board supports an SPI bus, based on the S3C2440’s integrated SPI controller. It is connected to
the onboard devices using the standard kernel method, so all methods described here are not special to the
Mini2440.

Connected devices can be found in the sysfs at the path /sys/bus/spi/devices. It depends on the corresponding
SPI slave device driver providing access to the SPI slave device through this way (sysfs), or any different kind of
API.

Currently no SPI slave devices are registered, so the /sys/bus/spi/devices directory is empty.

8.10 Touchscreen

A simple test of this feature can be run with:

ts_calibrate

to calibrate the touch and with:

ts_test

to run a simple application using this feature.

To see the exact events the touch generates, we can also use the evtest tool.

evtest /dev/input/touchscreen

Input driver version is 1.0.1

Input device ID: bus 0x19 vendor 0xdead product 0xbeef version 0x102

Input device name: ”S3C24XX TouchScreen”

Supported events:

Event type 0 (Sync)

Event type 1 (Key)

Event code 330 (Touch)

Event type 3 (Absolute)

Event code 0 (X)

Value 0

Min 0

Max 1023

Event code 1 (Y)

Value 0

Min 0

Max 1023

Testing ... (interrupt to exit)

Whenever we touch the screen this tool lists the values the driver reports.

Don’t rely on the event node the kernel creates in the /dev/input/ directory. Over the time the
index can change. This board support package comes with a special udev rule, which creates a
link called touchscreen always pointing to the correct event node. Use the touchscreen in your
setup instead of the plain event node.

45

8 Special Notes

8.10.1 If the Touchscreen does not work

A functional touchscreen depends on some external configurations and parameters. Firstly, the touchscreen
driver for the S3C2440 CPU must be enabled in the kernel. If it is supported, it can be checked at run-time with
the following command:

ls /sys/bus/platform/drivers

A samsung-tsmust be listed in this directory. If not, the kernel must be re-configured to support this device.

Secondly, a functional touchscreen depends on is the registered touchscreen device. If it is registered, this can
be checked at run-time with this command:

ls /sys/bus/platform/devices

A s3c2440-tsmust be listed in this directory. If not, something is preventing the kernel from registering this de-
vice. The touchscreen on this platform is an optional part, so it must be enabled on demand tomake it work. The
touchscreen is enabled by the mini2440= kernel parameter. If the running kernel receives the correct parameter
this setting can be checked with:

cat /proc/cmdline

console=ttySAC0,115200 mini2440=0tb mtdparts=nand:256k(barebox),64k(bareboxenv),2048k(kernel),-(root)

Referring to the mini2440=0tbparameter, specifically to the ’t’. If the ’t’ is present the touchscreen gets registered
at run-time and can be used. If the ’t’ is missing the touchscreen will NOT be registered.

To add amissing ’t’, restart the target, stop Barebox from booting and edit the bootparameter in the /env/config
file. Save the new settings and boot again.

8.10.2 If the Touchscreen does not work as expected

It’s not easy to create a touchscreen driver that works with all kinds of touchscreens. They differ in their hardware
parameters, so most of the time some adaptions must be done to get better results.

Two locations exists where parameters can be changed:

• in the kernel driver

• in the tslib (touchscreen library)

The tslib is a userland component and can be changed at any time. The kernel driver is a compiled in component,
so the kernel must be re-built and re-started to make any change visible.

Lets start with the kernel driver: It uses three parameters to support the physical behaviour of the touchscreen.

• .delay a delay counted in clocks of 3.68 MHz between the measurement of the X and Y coordinate. If the
touchscreen lines are filtered with a low-pass it could be useful to increase this value. Max value is 0xffff.

• .presc clock prescaler for the AD converter. The larger the value is, the lower the AD converter works
(FIXME: Seems not be used)

• .oversampling_shift defines the samples to be measured and to be averaged before reporting a coordi-
nate. ’0’ means one sample per report, ’1’ means two samples per report, ’2’ means 4 samples and so
on.

46

8 Special Notes

Tomodify the setting, open the fileplatform-mini2440//build-target/linux-3.16/arch/arm/mach-s3c2440/mach-mini2440.c
and search for the mini2440_ts_cfg structure. It looks like this:

static struct s3c2410_ts_mach_info mini2440_ts_cfg __initdata = {

.delay = 10000,

.presc = 0xff,

.oversampling_shift = 0,

};

After modifying, the kernel must be re-built:

$ ptxdist drop kernel compile

$ ptxdist go

These steps ensure the modified sources are re-compiled. Use this new kernel and do the tests with the touch-
screen again.

To change the userland tslib this can be done at run-time of the Mini2440. Just modify the /etc/ts.conf.

• module_raw inputmeans the tslib uses the raw data from the Linux’s input system

• module pthres pmin=1 means the minimal pressure must be ’1’ to count as a touchscreen event. Other
values do not make sense yet, as the driver does not support pressure measurement

• module variance delta=30 FIXME

• module dejitter delta=10 FIXME

• module linear FIXME

After changing one of these entries a run of ts_test can show if the new settings are better than the previous
ones.

8.11 LCD Backlight

The backlight of the LCD can be controlled via the sysfs entry in:

/sys/class/leds/backlight/

To switch it off, just write a ’0’ into its brightness entry:

echo 0 > /sys/class/leds/backlight/brightness

and a ’1’ to switch it on again:

echo 1 > /sys/class/leds/backlight/brightness

8.12 USB Host Controller Unit

The Mini2440 supports a standard OHCI Rev. 1.0a compliant host controller onboard for low and full speed
connections.

47

8 Special Notes

8.13 Watchdog

The internal watchdog will be activated when an application opens the device /dev/watchdog. Default timeout
is 15 seconds. An application must periodically write to this device. It does not matter what is written. Just the
interval between these writes should not exceed the timeout value, otherwise the system will be reset.

For testing the hardware, there is also a shell command which can do the triggering:

watchdog -t <trigger-time-in-seconds> /dev/watchdog

This command is part of the busybox shell environment. Keep in mind, that it should only be used for testing. If
the watchdog gets fed by it, a crash of the real application will go unnoticed.

For the Mini2440 the default 60 seconds interval period the tool is using is too long. The driver for the S3C2440
only supports up to a 40 seconds interval. So, the additional parameter -T 40must be given.

8.14 ADC

Getting the digital equivalent of one of the analogue input channels can be done by reading the corresponding
entries in the sysfs.

For example the analogue input channel 0 on the Mini2440 is connected to the potentiometer W1. By reading
the entry /sys/devices/platform/s3c24xx-adc/s3c-hwmon/in0_input we can watch the different digital values
while turning the potentiometer W1.

Note: The analogue input channels 4 ... 7 are occupied by the touchscreen feature and can only be used as simple
analogue inputs if the touchscreen feature is disabled.

8.15 Keypad

Using the up to 6 available key buttons on the Mini2440 in a reqular manner requires a working console in the
kernel. Here the list of the current key codes they generate when pressed:

• K1, code ’F1’

• K2, code ’F2’

• K3, code ’F3’

• K4, code ’Power’

• K5, code ’F5’

• K6, code ’F6’

If one wants to change the generated codes, she/he can change it in the platform code found in
arch/arm/mach-s3c2440/mach-mini2440.c, specially in the array mini2440_buttons.

If the key buttons are working as expected, can also be checked without a working console with the following
command:

48

8 Special Notes

evtest /dev/input/buttons

Input driver version is 1.0.1

Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100

Input device name: ”gpio-keys”

Supported events:

Event type 0 (Sync)

Event type 1 (Key)

Event code 59 (F1)

Event code 60 (F2)

Event code 61 (F3)

Event code 63 (F5)

Event code 64 (F6)

Event code 116 (Power)

Testing ... (interrupt to exit)

Don’t rely on the event node the kernel creates in the /dev/input/ directory. Over the time the
index can change. This board support package comes with a special udev rule, which creates
a link called buttons always pointing to the correct event node. Use the buttons in your setup
instead of the plain event node.

8.16 Audio

This kernel supports the audio capabilities of theMini2440 via a standard ALSA device. So, most of the available
tools to play or record sounds should work out of the box.

To control the audiomixer run the tool alsamixer, to play a simple sound file aplay can be used and forMP3 files,
textttmadplay is the correct tool.

8.17 USB Device

The S3C2440 processor in the Mini2440 comes with a USB device unit. This is the physical interface to let the
Mini2440 act in some roles in the USB world. For example the Mini2440 can act as a printer or a simple serial
adapter. There are also drivers to act as amass storage device, but its setup is more complicated. So, this section
describes the printer case.

To prepare the Mini2440 to act as a printer just load the printer gadget driver.

modprobe g_printer

Printer Gadget: Printer Gadget, version: 2007 OCT 06

Printer Gadget: using s3c2410_udc, OUT ep2-bulk IN ep1-bulk

Starting this driver will create a /dev/g_printer device node. This device node can be opened for reading and
writing. It’s the end of two ”pipes” for data to and from a connected host.

Now, the Mini2440 is ready for connection to a host via its USB B plug. If it works, the kernel at the host side will
detect a new device:

usb 1-1: new full speed USB device number 2 using s3c2410-ohci

usblp0: USB Bidirectional printer dev 7 if 0 alt 0 proto 2 vid 0x0525 pid 0xA4A8

49

8 Special Notes

Note: At the host side the usblpmodule is required to make this new USB hotplug device visible as a printer.

At the host side now a /dev/usblp0device node will be created. Also this device node can be opened for reading
and writing. And also this node is the end of two ”pipes” for data to and from the ”printer”.

Everything we ’echo’ into /dev/usblp0 at the host side, we can ’cat’ from /dev/g_printer at the Mini2440 side.
And vice versa.

And a real funny game is to connect Mini2440’s USB A to its own USB B. Then the Mini2440 can talk to itself.

8.18 Buzzer

The buzzer on the Mini2440 will be triggered by a regular alert in a console. So, a simple

echo -e ”\a”

can make a noise. But this only works if local console support is enabled.

If no local console is available the small ring-bell tool will help.

ring-bell /dev/input/beeper

will make some noise for you.

8.19 Get the latest BSP Release for the Mini2440

Information and the latest release of the Mini2440 BSP can be found on our website at:

http://www.oselas.org/oselas/bsp/index_en.html

8.20 Be Part of the Mini2440 BSP Development

If you want to use the latest and greatest board support package for the Mini2440 you can use the git repository
as your working source, instead of a release archive.

The git repository can be found here:

http://git-public.pengutronix.de/git-public/OSELAS.BSP-Pengutronix-Mini2440.git

If you want to contribute to this project by sending patches, these patches should always be based on themaster
branch of this repository.

8.21 Notes About the Bootloader Barebox

Everythingmentioned here (variable names and file names) in the run-time environment that Barebox uses, is for
convenience only. The developers of Barebox decided to provide a generic run-time environment that satisfies
the most common requirements. All descriptions below will refer to this generic run-time environment and it’s
behaviour.

There are no restrictions in how to adapt this environment for one’s own needs. How Barebox enters it’s shell is
compiled-in. Changing the /env/bin/init, allows one to modify Barebox’s behaviour.

50

http://www.oselas.org/oselas/bsp/index_en.html

8 Special Notes

8.21.1 Run-Time Environment

The Barebox binary handles only target initialization and provides device drivers and various commands to do
things after the initialization. It is up to the user to use these features to make her/his target work. This works
on a shell code base. For example, Barebox tries to run the /env/bin/init script right after the initialization is
finished. This file is expected as a part of the environment.

From the technical point of view, theBarebox environment is a simple archivewhich contains files anddirectories.
At startup, this archive will be extracted to the env/ directory and can be used afterwards on a regular file base.
Note: the / directory in Barebox is a RAM filesystem.

Barebox always tries to load the user environment archive from the registered persistent media first (aka ”user
env”). If this fails, Barebox defaults to the default compiled-in environment archive.

The compiled-in default environment archive is a read only archive defined at compile-time of Barebox.

The user env can be changed at any point of time.

8.21.1.1 Run-Time Environment (env) and how it is controlled by Barebox

When starting from a totally clean system (e.g. NAND flash is empty) and if you do an update -t barebox -d

nand to bring in the Barebox bootloader into the NAND flash and then reset the mini2440, Barebox will use its
default compiled-in environment because the user env is still empty. To change the run-time Barebox environ-
ment, on the target, one can do edit /env/config (to make the changes), CTRL D (to store the changes to the
RAM disk and leave the editor) and a saveenv (to save the changes to the user env). The next time we boot the
mini2440, the user env takes priority. Note: the default Barebox environment has not been changed.

Here a graphic to show the process:

• state 1: the 1st boot. Barebox runs in RAM and loads the env from the default compiled-in environment
due to the user env is still empty

• state 2: the user changes the env and saves it. Now, the user env is no longer empty

• state 3: At the next system start Barebox now ignores the default compiled-in environment and loads its
env from the user env

The above method is appropriate for minor changes in the Barebox environment. For major env changes it is
suggested that we modify the environment files in the board support package instead of on the target. On our
host it’s easier to change these files (for example with our favourite editor instead of the simple editor embedded
in Barebox) and these changes remain, should we want to re-build everything again.

51

8 Special Notes

The environment is a collection of files from different locations in the board support package.
One location is the configs/platform-friendlyarm-mini2440/barebox-64m-env/. Another location is
platform-mini2440//build-target/barebox-2011.05.0/defaultenv/. The second location contains the more
generic shell scripts, while the first location contains user specific settings. If we intend to change the generic
shell scripts, it’s easier to copy them to the configs/platform-friendlyarm-mini2440/barebox-64m-env/ location
instead of modifying them at their original path (as this modification would be lost, if we run ptxdist clean).
The files at configs/platform-friendlyarm-mini2440/barebox-64m-env/ takes priority over the one from the
platform-mini2440//build-target/barebox-2011.05.0/defaultenv/ if files with the same name exits.

After such a change we should run:

$ ptxdist clean barebox

$ ptxdist go

$ ptxdist images

This rebuilds Barebox and includes the changed default compiled-in environment.

Next, make these files available for download via network/TFTP:

$ cp platform-mini2440/images/barebox-image /tftpboot/barebox-mini2440

Now,

mini2440:/ update -t barebox -d nand

together with its new compiled-in default environment. But at the next system start also this new Barebox would
use the user env if it is still present. To make it use the new compiled-in default environment we must either
remove the user env with:

mini2440:/ erase /dev/nand0.bareboxenv.bb

or update the user env with the prepared archive from the last build:

$ cp platform-mini2440/images/barebox-default-environment /tftpboot/barebox-default-environment- ↵
mini2440

mini2440:/ update -t bareboxenv -d nand

8.21.2 How does the PartitioningWork in Barebox

Partitioning is a way to handle large media in smaller logical units. This simplifies updates of different compo-
nents and leaves others untouched. For example, one can update the kernel to fix a bug in a driver but keep the
root filesystem unchanged. Also, redundant boot can be realized with more than one partition per component.

Barebox uses partitioning of the available persistent media (for example, NOR or NAND flash, but also harddisks
or SD cards) to handle and store the required parts to make a target work.

Some of the available persistent media can store it’s partition information on the media itself. For example hard
disks, compact flash cards or SD cards can provide their own partition table.

In this case, Barebox can read back this table from the media and handle these partition’s sizes and locations in
a correct manner.

But, there are still somemedia that do not provide this kind of partition table. The well known plain flash devices
(of type NOR or NAND) are such candidates. These devices need slightly different handling. The most common

52

8 Special Notes

method the kernel uses is the Command line partition table parsing for the MTD (Memory Technology Devices)
devices. A user gives a kernel parameter with the list of names and sizes that describes the partition layout of the
corressponding flash memory.

Barebox uses the same syntax to describe the partition and kernel layout. So, a user only has to define the layout
once. It will be shared between Barebox and the Linux kernel. If one doesn’t use consistent layout, one could
destroy the data in one partition by changes in another parition.

This partition layout string is defined to:

<size>(<name>)[,<size>(<name>)[,<size>(<name>)]...]

<size> is a number followed by its unit. The unit can be k for kilobyte, M for megabyte and G for gigabyte. For
<size> also the special letter - can be given. This means, fill the remaining space up to the end of themedia. The
<name> can be anything one likes, but must not contain any spaces!

Here is the most common partition layout configuration:

In Barebox’s run-time environment it looks like:

256k(barebox),64k(bareboxenv),2048k(kernel),-(root)

• bootloader itself (barebox): this binary brings up the target after power on or reset

• persistent environment (bareboxenv): used by Barebox to bring up the whole system in the way that the
user has configured it

• operating system (kernel): the kernel image, Barebox will load and run it

• root filesystem (root): used by the kernel as the root filesystem

The size and location of some of these partitions can be modified at run-time via the variable nand_parts in the
env/config file. Here the user can increase the kernel partition, or add more partitions to the free part of the list.

However, two of the listed partitions are special: the location and size of the bootloader (barebox) partition and
of the run-time environment (bareboxenv) partition.

These must be known soon after reset. So, we have a chicken/egg problem: to read the persistent environment,
Barebox must know where the persistent environment is located. To do so, Barebox initially creates the bare-
box and bareboxenv partitions and after loading the persistent environment Barebox then adds the remaining
partitions based on the nand_parts variable.

This handling implies the internally registered partitions for Barebox and the persistent environmentmust be the
same in size and location as the partitions described in the nand_parts variable.

This then means, if one would like to change the size of the barebox or the bareboxenv partitions, she/he must
change the platform source code and the nand_parts variable.

Here an example for a partition setup in the run-time environment:

nand_parts=”256k(barebox),64k(bareboxenv),2048k(kernel),-(root)”

It corresponds to the following NAND partition layout:

53

8 Special Notes

This setup defines

• 256 kiB for the bootloader (barebox) at the beginning of the persistent media.

• 64 kiB for the persistent environment (bareboxenv) following the bootloader partition

• 2 MiB for the kernel (kernel)

• the remaining space on the persistent media for the root filesystem (root)

For the Mini2440 the platform source code is located in:

platform-mini2440/build-target/barebox-<version>/arch/arm/boards/mini2440/mini2440.c

and looks like this:

[...]

/* ----------- add some vital partitions -------- */

devfs_del_partition(”self_raw”);

devfs_add_partition(”nand0”, 0x00000, 0x40000, PARTITION_FIXED, ”self_raw”);

dev_add_bb_dev(”self_raw”, ”self0”);

devfs_del_partition(”env_raw”);

devfs_add_partition(”nand0”, 0x40000, 0x10000, PARTITION_FIXED, ”env_raw”);

dev_add_bb_dev(”env_raw”, ”env0”);

[...]

Please ensure after changing any of the ”Fixed in size and location” partitions that Barebox is re-compiled and
re-flashed to keep the compiled-in environment in sync with the platform source code.

Also consider: for the partitions that are free in size and location, you can change these settings at run-time
and store it to the persistent environment. But, if this persistent environment gets lost Barebox will default to
the compiled-in environment. If this compiled-in environment has different partition sizes and locations, error
messages will occur. This is because reading from partitions with wrong settings in size and location will fail.

So, the best procedure is to change the compiled-in environment to ensure the partition layout is always consis-
tent, even if the modified persistent environment gets lost.

8.22 NFS with PTXdist and Barebox

NFS stands forNetwork FileSystem. It is one way to export a local filesystem content via network to another host.
In our case we can use it to simulate a root filesystem for our target. This simplifies application development for
theMini2440. We do not have to change anything locally on theMini2440. As our target is using our local host’s
filesystem, we can also change everything locally and it will be visible at target’s side instantly.

Starting with PTXdist-2012.10.0 there is more than one choice how to get the network based development to
work.

• a user mode NFS daemon, coming with PTXdist

• a classic NFS daemon, running on our development host

54

8 Special Notes

8.22.1 Classic NFS daemon

Configuring and running the classicNFS daemon requires root permissions on the development host: files owned
by rootmust bemodified and system servicesmust be run. If we don’t have root permissions, the user-modeNFS
daemon is a useful alternative. Refer 8.22.3.

What we need at our host’s side:

• NFS server support in our Linux kernel

• NFS utils

• the portmap tool

It depends on the distribution we are using, how to get and enable this feature on our host.

To get these components on a Ubuntu based system we just have to enter:

$ sudo apt-get install nfs-kernel-server nfs-common portmap

The last two may not be required for a NFS server, but if you decide to install a NFS client on the Ubuntu box or
need to do any troubleshooting later, you will need them.

First thing is to enable the export of specific parts of the host’s local filesystem. This should be done very carefully,
because:

• we must export the required filesystem parts in a very unsafe manner

• typos in the export’s controling file may results into very funny and confusing error messages

The ”unsafe manner” means, we allow any root user on the remote system using our local filesystem also to be
the root user on our host! This is a huge security hole, if more parts of the local filesystem gets exported than
intended.

PTXdist creates one directory intended for NFS root filesystem export when building the board support package:

$ ls platform-mini2440/root

bin dev etc home lib mnt proc root run sbin sys tmp usr var

If we are a little bit paranoidwe should only export exactly this onedirectory. Thebestway to knowwhat directory
path has to be used to export exactly this directory we can follow these steps:

$ cd platform-mini2440/root

platform-mini2440/root$ pwd -P

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root

The path, the pwd command outputs is the one we should export at our local host and our Mini2440must mount
at runtime to get access to this directory.

Exporting this specific directory presumes the directorymust already exist when the export is en-
abled. Exporting first and then building the board support package (which creates the directory
at this point of time) does not work as expected. Every ptxdist clean; ptxdist go requires to
re-export this directory.
To be less dependend on the build state of the board support package, the BSP’s directory could
be exported instead: /home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0

55

8 Special Notes

But step by step. Export first:

The file to be modified is the /etc/exports. This file is used by the NFS related tools to know what parts of the
filesystem should be exported and how it should be exported.

In our case we add the following line to this file:

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root *(rw,no_root_squash,sync, ↵
no_subtree_check)

What does it mean: First part of the line is the to be exported directory. Second part is, who is allowed to use this
directory. In the line mentioned above the asterisk (’*’) means everybody. Here we can use an IP range instead
of an asterisk to make the security hole a little bit smaller. Or, even smaller by only allowing one IP address. The
third part are the permissions the remote host has on our locally exported path. rwmeans read write permission.
The opposite is rowhich means read only. But in our case we need the rw in order to use the exported directory
for our root filesystem requirements.

Note: Do not add any white space between the asterisk/IP range and the left parenthesis starting the permission
or you will get confusing error messages.

Most of the time there is no user management at our targets. Or to be more precise: most of the time only one
user is required to make the target work as expected. This is always the user root. To allow this root user at
the target side to touch all files in our exported directory the parameter no_root_squashmust be given. But be
aware: In this case the remote root user is also the root user on our host! Do you feel the risk? ;-) That’s why only
to export the required directory and nothing more.

If the NFS service is not running on our host yet, it’s now time to run it:

$ sudo /etc/init.d/nfs-kernel-server start

Note: This step can differ on other distributions.

If the NFS service is already running, we can force to export all directories listed in /dev/exports by running:

$ sudo exportfs -rv

To check the current export state we can simply run a:

$ sudo exportfs -v

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root

<world>(rw,wdelay,no_root_squash,no_subtree_check)

Note: Sometimes the list of options differ from theoptionswegive in /etc/exports. These options are the default
settings the NFS service is used if not otherwise set.

<world>means here the asterisk (’*’).

Now is everything prepared at the host’s side. Next step is to instruct ourMini2440 to use the new host’s feature.
Refer section 6.4 how to do so. The variable nfsrootmust be setup in accordance to the exported filesystem on
our host.

Even if we export

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0

on our host (to avoid the ptxdist clean; ptxdist go issue mentioned in the WARNING above), our Mini2440
must always use the full path:

56

8 Special Notes

nfsroot=/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root

After we have a working NFS system all that is required is a power-up on the Mini2440, connected to our host,
to enable sharing of the root file system.

After login to our target we can now look at any of the files in platform-mini2440/root, for example:

On the server (host):

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root/etc/fstab

and on the target (Mini2440)

/etc/fstab

We should see that the contents of these files are the same. Also, we can change this file’s contents from our
target or from our host AND see the changes appear on the other device.

8.22.2 Troubleshooting

If towards the end of the kernel boot process you get this message:

VFS: Unable to mount root via NFS, trying floppy

VFS: Cannot open root device “”nfs or unknown-block(2,0)

Don’t panic!

Have a look in /var/log/syslog on the server and if you see a message like this:

Jun 15 21:30:09 my-desktop mountd[1716]: refused mount request from 192.168.1.230 for

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/root (/): not exported

Have a real close look and see that you haven’t made amistake. Check again the directory the server exports and
also check the content of the nfsroot variable. The start of the path must match exactly. Any typo will result into
this kind of failure.

8.22.3 Usermode NFS daemon

The advantages of the user-mode NFS daemon are:

• no Linux kernel support required

• no root permissions required

• less painful to configure

• less security issues

• all exported files have correct permissions and owners (at least from the target’s point of view)

• PTXdist provides everything required to make it work

Due to the different behaviour of the user-mode NFS daemon in contrast to the Linux kernel based classic NFS
daemon, the target needs a different setup to make it work with the user-mode NFS daemon.

From the target’s point of view

57

8 Special Notes

• a fixed path is used to mount the NFS root

• different network ports are in use

The NFS root path the user-mode NFS daemon exports is just /root. This simplifies the path to be setup at the
target. But as it is a user-mode NFS daemon it cannot use the standard network ports of the classic NFS daemon.
That’s why we need to define different port numbers for the bootloader and the kernel.

The user-mode NFS daemon uses the network port 2049 for the NFS service port and also network port 2049 for
themountd port. We must ensure our target uses these network ports, when it contacts our host.

Putting everything together for the Linux kernel:

nfsroot=”/root,v3,tcp,port=2049,mountport=2049”

After the setup of the target is done, the next step is to start the user-mode NFS daemon at our host. Thanks to
PTXdist this step is very easy now:

$ ptxdist nfsroot

Mount rootfs with nfsroot=/root,v3,tcp,port=2049,mountport=2049

UNFS3 unfsd 0.9.22 (C) 2006, Pascal Schmidt <unfs3-server@ewetel.net>

/home/me/OSELAS.BSP-Pengutronix-Mini2440-2015.01.0/platform-mini2440/: ip 0.0.0.0 mask 0.0.0.0 options ↵
5

Note: if a classic NFS daemon is already running, the user-mode NFS daemon might conflict with it. If the user-
mode NFS daemon terminates with the message:

bind: Address already in use

Couldn’t bind to udp port 2049

then a classic NFS daemon is still running and should be stopped first.

Even if the user-modeNFS daemon is used for the NFS root filesystem, currently a TFTP daemon
for downloading the Linux kernel is still required. Maybe future releases will also remove this
dependency.

8.23 Using a Foreign Toolchain

It is possible to use a different toolchain than the recommended OSELAS.Toolchain. But to make sure the result
will work on the Mini2440, some preconditions must be met.

The Mini2440 uses a Samsung S3C2440 processor. This processor comes with a so called ARMv4 core (also
called the architecture). This means some internal features this processor supports and - much more important -
the command set it understands.

So, an important precondition to use a foreign toolchain is, it must generate code only for this ARMv4 core. There
are always two ways to ensure the compiler generates code that matches the architecture:

• the default settings are matching the ARMv4 core architecure

• a compile parameter temporarely switches to this ARMv4 core architecure

58

8 Special Notes

The first way was set, when the toolchain was built. In the case of our OSELAS.Toolchain we configure the com-
piler with:

--with-arch=armv4t

which results into the default compiler option for code generation if not otherwise specified later on.

The second way can be archived by using the compiler parameter -march=armv4t. This will switch the code gen-
eration to the ARMv4 core architecure for the run of the compiler.

8.23.1 Discovering Toolchain’s Compiler Defaults

Two ways do exist to get the default settings out of the toolchain’s compiler.

8.23.1.1 By Preprocessor Macros

Run the following command and examine the result:

$ echo ”” | arm-linux-gcc -E -dM - | grep __ARM_ARCH_

#define __ARM_ARCH_4T__ 1

If the listed __ARM_ARCH_macro contains higher architecture numbers than the shown 4 this toolchain cannot
be used for the Mini2440.

Currently known notworking architectures are:

• __ARM_ARCH_5__

• __ARM_ARCH_5E__

• __ARM_ARCH_5T__

• __ARM_ARCH_5TE__

• __ARM_ARCH_5TEJ__

• __ARM_ARCH_6__

• __ARM_ARCH_6J__

• __ARM_ARCH_6K__

• __ARM_ARCH_6Z__

• __ARM_ARCH_6ZK__

• __ARM_ARCH_6T2__

• __ARM_ARCH_7M__

• __ARM_ARCH_7A__

8.23.1.2 By Parameter Listing

More default options can be read back from the toolchain’s compiler in this way:

$ touch test.c

$ arm-linux-gcc -S --verbose-asm

59

8 Special Notes

The result in test.swill look like this:

.arch armv4t

.fpu softvfp

.eabi_attribute 20, 1

.eabi_attribute 21, 1

.eabi_attribute 23, 3

.eabi_attribute 24, 1

.eabi_attribute 25, 1

.eabi_attribute 26, 2

.eabi_attribute 30, 6

.eabi_attribute 18, 4

.file ”test.c”

@ GNU C (ctng-1.6.1) version 4.4.3 (arm-none-linux-gnueabi)

@ compiled by GNU C version 4.3.0 20080428 (Red Hat 4.3.0-8), GMP version 4.3.1, MPFR version 2.4.2-p2.

@ GGC heuristics: --param ggc-min-expand=98 --param ggc-min-heapsize=128213

@ options passed: test.c -march=armv4t -mtune=arm920t -mfloat-abi=soft

@ -fverbose-asm

@ options enabled: -falign-loops -fargument-alias -fauto-inc-dec

@ -fbranch-count-reg -fcommon -fearly-inlining

@ -feliminate-unused-debug-types -ffunction-cse -fgcse-lm -fident

@ -finline-functions-called-once -fira-share-save-slots

@ -fira-share-spill-slots -fivopts -fkeep-static-consts

@ -fleading-underscore -fmath-errno -fmerge-debug-strings

@ -fmove-loop-invariants -fpeephole -freg-struct-return -fsched-interblock

@ -fsched-spec -fsched-stalled-insns-dep -fsigned-zeros

@ -fsplit-ivs-in-unroller -ftrapping-math -ftree-cselim -ftree-loop-im

@ -ftree-loop-ivcanon -ftree-loop-optimize -ftree-parallelize-loops=

@ -ftree-reassoc -ftree-scev-cprop -ftree-switch-conversion

@ -ftree-vect-loop-version -funit-at-a-time -fverbose-asm

@ -fzero-initialized-in-bss -mglibc -mlittle-endian -msched-prolog

@ -mthumb-interwork

@ Compiler executable checksum: cd60c209f399d02b2e94fe81b4cfa8ba

.ident ”GCC: (ctng-1.6.1) 4.4.3”

.section .note.GNU-stack,””,%progbits

The important line here is the one with the -march=armv4t. It shows the default setting for code generation.

8.23.2 Discovering Toolchain’s Library Optimization

Beside the compiler defaults, also the basic C library coming with the toolchain is an important part. As it comes
with the toolchain in a binary data format, the way it was compiled must also match our architecture.

$ readelf -A <toolchain-install-directory>/arm-none-linux-gnueabi/lib/libc-2.9.so

Attribute Section: aeabi

File Attributes

Tag_CPU_name: ”4T”

Tag_CPU_arch: v4T

Tag_ARM_ISA_use: Yes

Tag_THUMB_ISA_use: Thumb-1

Tag_ABI_PCS_wchar_t: 4

Tag_ABI_FP_denormal: Needed

Tag_ABI_FP_exceptions: Needed

60

8 Special Notes

Tag_ABI_FP_number_model: IEEE 754

Tag_ABI_align8_needed: Yes

Tag_ABI_enum_size: int

The important information is the Tag_CPU_arch: v4T line which matches our architecture.

Note: running the command on the libc-2.0.so library is an example only. You can run it on any target library
you find in your toolchain.

It is always possible to overwrite the architecture the compiler creates code for by command line
parameters. But it only works for newly compiled code. It does not help for the basic C library
when this component was compiled for a different architecture. In this case there is no way to
use this toolchain.

8.23.3 BSP changes to use a foreign Toolchain

Each PTXdist based board support package is configured for a specific toolchain vendor, a specific compiler ver-
sion, toolchain name and basic C library version. This is to ensure a user uses the same environment the release
tests where made of and to get a reliable build.

Using another toolchain than the already defined one means, all these specified values must be changed. To do
so, we run:

$ ptxdist platformconfig

architecture --->

toolchain --->

() check for specific toolchain vendor

(4.4.3) check for specific gcc version

(2.9) check for specific glibc version

(arm-linux) gnu target

The settings above will switch off the vendor check and configures the board support package for a gcc-4.4.3
with a glibc-2.9 and a toolchain/compiler name of arm-linux.

After this change PTXdist is unable to find the toolchain by its own. In this case an additional step is required to
prepare the board support package for the build:

$ ptxdist toolchain <toolchain-install-directory>/bin

After that, a regular build can happen.

Don’t expect a successfull build after changing to a foreign toolchain. It is impossible to provide
code that builds on any compiler and compiler releases and any C library in the wild.

8.24 Using automagically the correct PTXdist Revision

After following the releases of this Mini2440 BSP our harddisk may contain various Mini2440 BSP releases, vari-
ous corresonding OSELAS.Toolchains revisions and PTXdist revisions. How to avoid to get confused in this situ-
ation?

61

8 Special Notes

One solution can be to do it in the same way as PTXdist itself remembers the platform, the current configuration
and the toolchain to be used to build the project: by symbolic filesystem links.

Lets take a look into the project, after it is set up:

$ ls -lF

total 44

-rw-r--r-- 1 jb user 408 Oct 4 18:11 CONTRIBUTORS

-rw-r--r-- 1 jb user 18002 Oct 4 18:11 COPYING

-rw-r--r-- 1 jb user 6688 Oct 4 18:11 Changelog

-rw-r--r-- 1 jb user 4350 Oct 4 18:11 FAQ

-rw-r--r-- 1 jb user 177 Oct 4 18:11 README

drwxr-xr-x 3 jb user 160 Oct 4 18:11 configs/

drwxr-xr-x 3 jb user 80 Jun 12 11:34 documentation/

drwxr-xr-x 4 jb user 128 Oct 4 18:11 local_src/

drwxr-xr-x 2 jb user 72 Oct 4 18:12 platform/

drwxr-xr-x 2 jb user 72 Oct 4 18:12 platform-mini2440/

drwxr-xr-x 3 jb user 72 Oct 4 18:11 projectroot/

drwxr-xr-x 2 jb user 120 Oct 4 18:11 protocol/

drwxr-xr-x 2 jb user 144 Oct 4 18:11 rules/

lrwxrwxrwx 1 jb user 62 Oct 4 18:12 selected_platformconfig -> configs/platform-friendlyarm-mini2440 ↵
/platformconfig-NAND-128M

lrwxrwxrwx 1 jb user 17 Oct 4 18:12 selected_ptxconfig -> configs/ptxconfig

lrwxrwxrwx 1 jb user 115 Oct 4 18:12 selected_toolchain -> /opt/OSELAS.Toolchain-2012.12.0/arm-v4t- ↵
linux-gnueabi/gcc-4.7.2-glibc-2.16.0-binutils-2.22-kernel-3.6-sanitized/bin/

Note the three symbolic links selected_platformconfig, selected_ptxconfig and selected_toolchain. They
point to the correct files and locations to build this project.

Why not do the same with the PTXdist tool itself?

$ ln -s /usr/local/lib/ptxdist-2015.01.0/bin/ptxdist .

This command will add a new link with the name ptxdist, pointing to the PTXdist revision to be used in this
project. All we now need to do is to call the local link instead of the global PTXdist. This can be achived by using
the trailing ./

$./ptxdist do

$./ptxdist menuconfig

$./ptxdist images

You can imagine this will free us from thinking about the correct PTXdist revision on each build or configure step
in each PTXdist project. Now, all projects and PTXdist revisions can co-exist and we can use them all at the same
time.

And as we do not want to type longer commands than absolute required, we should shorten the symbolic link to
p

$ ln -s /usr/local/lib/ptxdist-2015.01.0/bin/ptxdist p

Now, typing is less time-consuming:

$./p do

$./p menuconfig

$./p images

62

8 Special Notes

And if we also do not want to enter the trailing ./ again and again (we are so lazy, aren’t we?) we could add the
following function to our own environment in /

�
.bashrc:

function p ()

{

if [-h ./p]; then

./p ${@};

else

echo ”No local PTXdist symlink found. Create the correct one first”

fi

}

Now it looks like a regular command again:

$ p do

$ p menuconfig

$ p images

To avoid the trailing ./we could also add the current directory to the search PATH. But to do so
is a really bad idea. At least compiling the OSELAS.Toolchain fails with the current directory in
the PATH. Use the function shown above. It also gives us a helpful errormessage instead silently
searching for ’p’ in our filesystemwith different funny and confusing error messages at the end.

8.25 Using time zone support on the Mini2440

TheMini2440comeswith a real time clock (RTC)whichkeeps trackof the timeevenwhen theMini2440 is switched
off (assumed here is a working battery). With the command hwclockwe can set and get the current time into or
from the RTC. The kernel from the Mini2440 BSP is configured to read the current time from the RTC at system
startup to use it as its system time. The date command shows this system time.

date

Sat Jul 28 13:16:08 UTC 2012

hwclock

Sat Jul 28 13:16:12 2012 0.000000 seconds

hwclock -u

Sat Jul 28 13:16:18 2012 0.000000 seconds

Both commands show the time for the Universal Time Coordinated (UTC) timezone. But most of the time this is
not what we want. We want to have a localized time. So, we have to give these commands some information
about our local timezone. PTXdist supports the installation of timezone information files. But this feature is not
enabled by default, because we do not know where all the users of the Mini2440 live. And not all users live in
central Europe...

We need to understand that Linux always uses UTC time for its system time. There are various tools and library
functions for handling the time and only these tools and functions will change the time to the local timezone on
demand. With this knowledge we must set the time in the RTC always in UTC. But we shouldn’t worry about
that. There is no need to manually add or subtract the difference from our local time to the UTC. When the local
timezone information is available in the system, all the tools do it automatically.

Let us assume we live in New Zealand (main islands) and so we are 12 hours in advance of the UTC timezone.
There are two ways available to get the correct timezone information installed:

63

8 Special Notes

$ ptxdist menuconfig

Core (libc, locales) --->

<*> Timezone Files --->

(NZ) Timezone for /etc/localtime and /etc/timezone

[*] Use local build timezone database

[*] NZ

Most tools and library functions use the file /etc/localtime to get information about the local timezone. But the
timezone information files are stored to /usr/share/zoneinfo.
To keep the filesystem small the /etc/localtime file should be just a softlink to the corresponding file in the
/usr/share/zoneinfo directory. That is why we need to setup the correct filename from the timezone in-
formation file into the Timezone for /etc/localtime and /etc/timezone menu line. Otherwise the created
/etc/localtime softlink is broken as it points to nothing.

After populating the root filesystem with these timzone extensions, the date and hwclock commands act differ-
ently:

date

Sun Jul 29 01:49:47 NZST 2012

hwclock

Sat Jul 28 13:49:48 2012 0.000000 seconds

hwclock -u

Sun Jul 29 01:49:50 2012 0.000000 seconds

Different to the UTC example shown above, they now show localized times. The hwclock command prints the
RTC time ’as is’ as it assumes the RTC stored time is already localized. hwclock -u acts different, as it assumes
the RTC time is really UTC and also calculates the local time from the read value.

If we want to use a more precise timezone (New Zealand has two of them), we should enable the Pacific entry
in the PTXdist menu.

$ ptxdist menuconfig

Core (libc, locales) --->

<*> Timezone Files --->

(Pacific/Auckland) Timezone for /etc/localtime and /etc/timezone

[*] Use local build timezone database

[*] Pacific

This one gives us the same result as the NZ example shown above, while changing it to:

$ ptxdist menuconfig

Core (libc, locales) --->

<*> Timezone Files --->

(Pacific/Chatham) Timezone for /etc/localtime and /etc/timezone

[*] Use local build timezone database

[*] Pacific

selects a timezone information for the Chatham Islandswhich are 12 hours and 45 minutes in advance of UTC.

date

Sun Jul 29 02:55:36 CHAST 2012

hwclock

Sat Jul 28 14:10:39 2012 0.000000 seconds

hwclock -u

Sun Jul 29 02:55:40 2012 0.000000 seconds

64

8 Special Notes

But we must keep in mind: if we want to set the time of the RTC, we always must set it in UTC. But if the local
timezone information is present in theMini2440’s root filesystem this is very easy. We just have to set the system
timewith our current local time and thenwrite the system time into the RTCwith a parameter that will really store
it in UTC. Thanks to the timezone information files, the hwclock -uw command will do it automatically for us.

date ”2012-07-28 14:35”

Sat Jul 28 14:35:00 CHAST 2012

hwclock -uw

8.26 HowTo customise your root filesystem and update PTXdist with it

For the past year when I wanted to include a binary, such as msmtp, or add a config file, such as msmtprc, I
just added these files to /

�
my_PTXdist/platform-mini2440/root/ folder. The problem here is that anytime I did a

ptxdist clean root I would lose these files. Fortunately, there is a proper way to do this.

The ’secret’ is revealed by looking into /usr/local/lib/ptxdist-version/rulesand specifically at rootfs.inand
rootfs.make. These two files give you the format tomake your own daves_rootfs.inand daves_rootfs.make files
which will live in /

�
your_PTXdist/rules folder.

For example here is my added daves_rootfs.in file:

SECTION=rootfs

menuconfig DAVES_ROOTFS

bool

prompt ”files in dave’s rootfs ”

help

Dave’s special files to make his target work

if DAVES_ROOTFS

config DAVES_ROOTFS_MSMTPRC_DAVE

bool

prompt ”install /etc/msmtprc-dave”

help

If enabled, it installs the ”./projectroot/msmtprc” file

config DAVES_ROOTFS_MSMTPRC_CHARLES

bool

prompt ”install /etc/msmtprc-charles”

help

If enabled, it installs the ”./projectroot/msmtprc-charles” file

config DAVES_ROOTFS_LIB_UDEV_RULESD_TTYACM0

bool

prompt ”install /lib/udev/rules.d/50-udev-default.rules”

help

If enabled, it installs the ”./projectroot/lib/udev/rules.d/50-udev-default.rules”

file if present, else a generic one from the ptxdist directory.

config DAVES_ROOTFS_TEST_PHP

bool

prompt ”install /home/test.php”

help

65

8 Special Notes

If enabled, it installs the ”./projectroot/home/test.php” file if present.

endif

When you do ptxdist menuconfig and look in Root Filesystem �> you will see a new heading called:

[] files in dave’s rootfs ---->

Say [y] and in there you can tick your special files that you want to include.

Next you have to make your own daves_rootfs.make file. Here’s an example:

-*-makefile-*-

#

Copyright (C) 2012 Dave Festing <dave_festing@hotmail.com>

#

See CREDITS for details about who has contributed to this project.

#

For further information about the PTXdist project and license conditions

see the README file.

#

#

We provide this package

#

PACKAGES-$(PTXCONF_DAVES_ROOTFS) += daves_rootfs

dummy to make ipkg happy

DAVES_ROOTFS_VERSION := 1.0.0

--

Target-Install

--

$(STATEDIR)/daves_rootfs.targetinstall:

@$(call targetinfo)

@$(call install_init, daves_rootfs)

@$(call install_fixup, daves_rootfs,PRIORITY,optional)

@$(call install_fixup, daves_rootfs,SECTION,base)

@$(call install_fixup, daves_rootfs,AUTHOR,”Dave Festing <dave_festing@hotmail.com>”)

@$(call install_fixup, daves_rootfs,DESCRIPTION,missing)

my install_alternative files

ifdef PTXCONF_DAVES_ROOTFS_MSMTPRC_DAVE

@$(call install_alternative, daves_rootfs, 0, 0, 0644, /etc/msmtprc-dave)

endif

ifdef PTXCONF_DAVES_ROOTFS_MSMTPRC_CHARLES

@$(call install_alternative, daves_rootfs, 0, 0, 0644, /etc/msmtprc-charles)

endif

ifdef PTXCONF_DAVES_ROOTFS_LIB_UDEV_RULESD_TTYACM0

@$(call install_alternative, daves_rootfs, 0, 0, 0644, /lib/udev/rules.d/50-udev-default.rules)

endif

ifdef PTXCONF_DAVES_ROOTFS_TEST_PHP

@$(call install_alternative, daves_rootfs, 0, 0, 0755, /home/test.php)

endif

66

8 Special Notes

@$(call install_finish, daves_rootfs)

@$(call touch)

vim: syntax=make

Some comments about this file:

ifdef PTXCONF_DAVES_ROOTFS_LIB_UDEV_RULESD_TTYACM0

@$(call install_alternative, daves_rootfs, 0, 0, 0644, /lib/udev/rules.d/50-udev-default.rules)

endif

This is a special file to modify 50-udev-default.rules so that I could plug in a USB dev board that thinks it is a
modem. See Teensy and Atmega32U4 dev board from Adafruit for details. install_alternative is the keyword
that tells PTXdist, in this case, to go looking for a file in /

�
your_PTXdist/projectroot/lib/udev/rules.d folder

and over-write the existing 50-udev-default.rules file from the udev package with this special one. And give it
the permissions 0644.

8.27 Updating to a new PTXdist version

Copy all the files in your old /
�
your_PTXdist/projectroot/ folder to somewhere for backup and then into your new

/
�
your_PTXdist/projectroot/ folder. Likewise, copy the daves_rootfs.in and daves_rootfs.make files some-
where for backup and then into your new /

�
your_PTXdist/rules folder.

I believe that should just work. Updating PTXdist versionsmay bring up changes that need sorting out. Certainly,
updating kernel versions needmore changes, but I guess that Pengutronix take care of these problemswhen they
update their BSPs.

Troubleshooting:

One issue that will really upset PTXdist is if the line endings are not Linux line endings. I still haven’t worked out
how these line endings ever got changed in theprocess of using the examples providedby Juergenat Pengutronix,
but here is the command that made them work:

sed ’s/.$//’ daves_new.in > daves_rootfs.in

Of course change all files names to something more appropriate to you!

8.28 Thanks from the Author

A thank you goes to Dave Festing for fixingmy English spelling and discussions about what to add to this manual.
Many details are still missing and we are also still in touch to improve things.

Another thank you goes to Josef Holzmayr for the QML demo included herein.

And also a thank you to all users of this Board Support Package and your positive feedback.

67

9 Document Revisions

2011/05/07 Initial Revision
2011/05/10 Path to the public GIT repository fixed
2011/05/21 Add info about available kernel releases
2011/06/03 Spelling fixes all over the place
2011/06/05 Add info about ADC, key buttons and audio usage
2011/06/17 Add info how to use the Mini2440 as a USB gadget
2011/06/17 Add info how to update individual software parts
2011/06/19 Add info how to control the LCD backlight
2011/07/02 Add info about the predefined Qt enabled configuration
2011/07/02 Add info about environment variables used by Qt at runtime
2011/07/24 Add generic info about PTXdist itself
2011/08/02 Add more info how to adapt the touchscreen to make it work as expected
2011/08/12 Add info how to setup an NFS service on the development host
2011/08/13 Add info how Barebox handles the various environment sources
2011/08/13 Rename ”Deploying the Mini2440” section to ”Bring in the Bootloader Barebox” due to content change
2011/08/13 Add info about the various boot methods the Mini2440 supports and how to make use of them
2011/09/03 Add a hint about display sizes are now handled in the kernel
2011/12/23 Add information about the QML demo which is now present in the BSP
2012/02/21 Add how to use the FriendyARM toolchain to build the Mini2440 BSP
2012/02/21 Add some ideas how to handle the different revisions of PTXdist
2012/07/30 Add how to deal with timezones
2012/12/10 Add Dave’s HowTo
2012/12/18 Add some infos about the new user mode NFS daemon feature in PTXdist
2013/10/04 Keep it up-to-date
2015/01/23 Keep it up-to-date
2015/01/23 Add the note about Kernel/run-time relationship

×

68

10 Getting help

Below is a list of locations where you can get help in case of trouble. For questions how to do something special
with PTXdist or general questions about Linux in the embedded world, try these.

10.1 Mailing Lists

10.1.1 About PTXdist in Particular

This is an English language public mailing list for questions about PTXdist. See

http://www.pengutronix.de/mailinglists/index_en.html

on how to subscribe to this list. If you want to search through the mailing list archive, visit

http://www.mail-archive.com/

and search for the list ptxdist. Please note again that this mailing list is just related to the PTXdist as a software.
For questions regarding your specific BSP, see the following items.

10.1.2 About Embedded Linux in General

This is a German language public mailing list for general questions about Linux in embedded environments. See

http://www.pengutronix.de/mailinglists/index_de.html

on how to subscribe to this list. Note: You can also send mails in English.

10.2 About Working on the Linux Kernel

The book Linux Kernel in a Nutshell from Greg Kroah-Hartman. Its online version can be read here:

http://www.kroah.com/lkn/

10.3 Chat/IRC

About PTXdist in particular

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chatroom #ptxdist. This is an English
room to answer questions about PTXdist. Best time to meet somebody there is at European daytime.

69

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html
http://www.kroah.com/lkn/

10 Getting help

10.4 FriendlyARMMini2440 specific Mailing List

oselas@community.pengutronix.de

This is a community mailing list open for everyone for all Mini2440’s board support package related questions.
Refer our page at

http://www.pengutronix.de/mailinglists/index_en.html

to subscribe to this mailing list.

Note: Please be aware that we cannot answer hardware only related questions on this list.

10.5 Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site. Ask our
sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Peiner Str. 6-8

31137 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 55 55

or by electronic mail:

sales@pengutronix.de

70

mailto:oselas@community.pengutronix.de
http://www.pengutronix.de/mailinglists/index_en.html
mailto:sales@pengutronix.de

This is a Pengutronix Quickstart Manual

Copyright Pengutronix e.K.
All rights reserved.

Pengutronix e.K.
Peiner Str. 6-8

31137 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 55 55

	OSELAS Quickstart forFriendlyARM Mini2440
	You have been warned
	First steps with PTXdist
	Getting a working Environment
	Download Software Components
	PTXdist Installation
	Main Parts of PTXdist
	Extracting the Sources
	Prerequisites
	Configuring PTXdist

	Toolchains
	Using existing Toolchains from different Vendors
	Omitting building a Toolchain
	Building a Toolchain
	Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2015.01.0
	Protecting the Toolchain
	Building additional Toolchains

	Building a root filesystem for the Mini2440
	Getting the Board Support Package
	Feature Dependend Configurations
	Identify Your Mini2440
	Network Adaptions
	Feature Adaptions

	Selecting a Userland Configuration
	Selecting a Hardware Platform
	Selecting a Toolchain
	Building the Root Filesystem
	Building an Image

	Bring in the Bootloader Barebox
	How to Boot the Mini2440
	NOR Type Flash Memory
	NAND Type Flash Memory
	SD/MMC Card Memory
	Network Memory
	Adaptions

	Updating the Mini2440
	NOR flash memory case
	NAND flash memory case
	Updating the Bootloader
	Updating the Persistent Environment
	Updating the Linux Kernel
	Updating the Root Filesystem

	SD/MMC card memory case
	Updating the Linux Kernel
	Updating the Root Filesystem

	Network memory case

	Special Notes
	Available Kernel Releases
	Available Userland Configuration
	Some details about the configs/ptxconfig.qt

	Framebuffer
	GPIO
	GPIO Usage Example

	I²C Master
	I²C Device AT24c08

	LEDs
	MMC/SD Card
	Network
	SPI Master
	Touchscreen
	If the Touchscreen does not work
	If the Touchscreen does not work as expected

	LCD Backlight
	USB Host Controller Unit
	Watchdog
	ADC
	Keypad
	Audio
	USB Device
	Buzzer
	Get the latest BSP Release for the Mini2440
	Be Part of the Mini2440 BSP Development
	Notes About the Bootloader Barebox
	Run-Time Environment
	How does the Partitioning Work in Barebox

	NFS with PTXdist and Barebox
	Classic NFS daemon
	Troubleshooting
	Usermode NFS daemon

	Using a Foreign Toolchain
	Discovering Toolchain's Compiler Defaults
	Discovering Toolchain's Library Optimization
	BSP changes to use a foreign Toolchain

	Using automagically the correct PTXdist Revision
	Using time zone support on the Mini2440
	HowTo customise your root filesystem and update PTXdist with it
	Updating to a new PTXdist version
	Thanks from the Author

	Document Revisions
	Getting help
	Mailing Lists
	About PTXdist in Particular
	About Embedded Linux in General

	About Working on the Linux Kernel
	Chat/IRC
	FriendlyARM Mini2440 specific Mailing List
	Commercial Support

